7/23/2019 _Part]_programming_analyticalVSNumeric_lesson03

Day 3, Part 1: Two body motion, analytical and
numeric

In [107]: import numpy as np
import matplotlib.pyplot as plt
¢matplotlib inline

Let's begin by defining the mass of the star we are interested in. We'll start with something that is the mass of
the Sun.

In [108]: | # mass of particle 1 in solar masses
mass_of star = 1.0

Let's also initialize vy = v, and ry = r, - values at perhelion. For reference let's check out the image again:

Aphelion @

In [109]: | # distance of m2 at closest approach (pericenter)
rp = 1.0 # in AU - these are the distance from Sun to Earth units
velocity of m2 at this closest approach distance
we assume vp of the larger mass (ml) is negligable
vp = 35.0 # in km/s

We'll also need some conversion factors:

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Partl_programming_analytical VSNumeric_lesson03.ipynb?download=false 1/9

7/23/2019

In [110]:

Note that astronomers use weird units - centimeters and grams - wait until we get to parsecs!

_Part]_programming_analyticalVSNumeric_lesson03

unit conversions

MassOfSun = 2e33 # g
MassOfJupiter = 1.898e30 # g
AUIinCM = 1.496el3 # cm
kmincm = le5 # cm/km

G = 6.674e-8 # gravitational constant in cm"3 g"-1 s"-2

Now, let's convert units so we can calculate things.

In [111]:

mass_of star = mass_of star*MassOfSun
vp = vp*kmincm
rp = rp*AUinCM

Analytical solution

The first thing we want to do is construct the analytical solution. We'll use some relations to calculate the

eccentricity and semi-major axis:

In [112]:

We also, for the time begin, only want to do elliptical/circular orbits, let's put in some checks for that:

In [113]:

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Partl_programming_analytical VSNumeric_lesson03.ipynb?download=false

analytically here are the constants we need to define to solve:

ecc = rp*vp*vp/(G*(mass_of star)) - 1.0
a =rp/(l.0 - ecc)

print some interesting things
print('Eccentricity = ' + str(ecc))

Porb = np.sqrt(4.0*np.pi**2.0*a**3.0/(G*(mass_of star)))

print('Orbital Period = ' + str(Porb) + ' sec')

Eccentricity = 0.37293976625711744
Orbital Period = 63373146.36904171 sec

if (ecc < 0):

print('eccentricity is less than zero, we should stop!')

elif (ecc >= 1):
print('eccentricity is greater than one')

print(' this is a parabolic or hyperbolic orbit, we should stop!')

else:
print('everything looks good, lets go!')

everything looks good, lets go!

2/9

7/23/2019 _Part]_programming_analyticalVSNumeric_lesson03

Exercise
Use the above information to plot r(theta).

(1-¢?)
Recall: #(6) = I(eroi(O)

Don't forget to label your axis with the correct coordinates!

Bonus: use other r;, and v, values to see how your plot changes!

Euler's Numerical Solution

Redo this calculation with our numerical methods. A few things that might be useful. First, calculating the
acceleration due to gravity:

In [114]: # mStar is the mass of the central star, rStar 1is the *vector*

from planet to mass of star

def calcAcc(mStar, rStar):
mag r = (rStar[0]**2 + rStar[l]**2)**0.5
mag a = -G*mStar/mag_r**2
how about direction? It's along rStar
but we need to make sure this direction
vector is a "hat" i.e. a unit vector
We want the direction only:
unitVector = rStar/mag r
return mag_ a*unitVector

Let's recall that 7p is the vector from the star to the planet, and Bp is the velocity vector - this vector will be
perpendicular to the orbit.

We can plot this on our elliptical plot before!

We'll use: https://matplotlib.org/3.1.0/api/_as gen/matplotlib.pyplot.arrow.html
(https://matplotlib.org/3.1.0/api/_as _gen/matplotlib.pyplot.arrow.html)

First we'll plot the elliptical path, with a dashed line.

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Partl_programming_analytical VSNumeric_lesson03.ipynb?download=false 3/9

7/23/2019

In [115]:

_Partl_programming_analyticalVSNumeric_lesson03
now, generate the theta array
ntheta = 500 # number of points for theta
th an = np.linspace(0, 360, ntheta)

now, create r(theta)

r an = (a*(l-ecc*ecc))/(1.0 + ecc*np.cos(th an*np.pi/180.0))

for plotting -> x/y coords for m2
X _an = r_an*np.cos(th _an*np.pi/180.0)/AUinCM
y_an = r_an*np.sin(th an*np.pi/180.0)/AUinCM

plot x/y coords
fig, ax = plt.subplots(l, figsize = (10, 10))
fig.suptitle('Coordinates Plot')

ax.plot(x an, y _an, 'b--', linewidth=5)
ax.plot(0.0, 0.0, 'kx")
ax.set xlabel('x in AU')
ax.set ylabel('y in AU')

ax.set xlim(-2.5, 2.5)
ax.set ylim(-2.5, 2.5)

now, let's plot these vectors

xarrow = 0; yarrow = 0 # coords of base

dx/dy point to direction

dy = 0 # easy peasy, just along x-axis

we can calculate r(theta = 0)

dx = (a*(l-ecc*ecc)/(1l.0+ecc*np.cos(0)))/AUinCM

plt.arrow(xarrow, yarrow, dx, dy,head width=0.1,
length_includes_head=True)

we can use this same location as the head of our velocity arrow

vxarrow = dx; vyarrow = 0

what length should we make? This is a little hard

to define since we are plotting something in

units of km/s and the x/y coords so we can

just choose a value

dy = 1.0 # arbitrary

dx = 0

plt.arrow(vxarrow, vyarrow, dx, dy, head width=0.1,
length includes head=True, color='red')

plt.show()

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Part]l _programming_analytical VSNumeric_lesson03.ipynb?download=false

4/9

7/23/2019

y in AU

-1

_Part]_programming_analyticalVSNumeric_lesson03

Coordinates Plot

X in AU

To use Euler's Method to calculate, we'll specify these initial conditions as 2D vectors:

In [116]: r O
v_0

One thing we want to do is calculate for many time steps. How do we select Ar? Well, let's try fractions of an
orbit.

In [117]: Porb =

63373146.36904171

= np.array([rp, 0])
np.array([0, vp])

np.sqgrt(4.0*np.pi**2.0*a**3.0/(G*(mass_of star)))
print (Porb,

seconds ')

seconds

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Part]l _programming_analytical VSNumeric_lesson03.ipynb?download=false

5/9

7/23/2019 _Part]_programming_analyticalVSNumeric_lesson03
Let's first start with time steps of 1e6 seconds. This means ~63 steps per orbit.

In [118]: delta t = le6b # seconds

For how many timesteps? Let's start with 1 orbit, or 64 steps.

In [119]: n_steps = 64

Exercise

Use Euler's method to calculate this orbit. Plot it ontop of your analytical solution.
Recall:

Fiel = Fi + U;At

and

Di1 = D: + G, (7)) At

Bonus: what happens if you increase the number of steps? Or changing Ar?

Possible Ans

In [120]: ri =r O
vi = v 0

r=1]
for i in range(n_steps):

what does it look like?
r = np.array(r)

File "<ipython-input-120-fd69df767af3>", line 9
r = np.array(r)

A

IndentationError: expected an indented block

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Partl_programming_analytical VSNumeric_lesson03.ipynb?download=false 6/9

7/23/2019 _Partl_programming_analyticalVSNumeric_lesson03

In [121]: # now, generate the theta array
ntheta = 500 # number of points for theta
th an = np.linspace(0, 360, ntheta)

now, create r(theta)
r an = (a*(l-ecc*ecc))/(1.0 + ecc*np.cos(th an*np.pi/180.0))

for plotting -> x/y coords for m2
X _an = r_an*np.cos(th _an*np.pi/180.0)/AUinCM
y_an r an*np.sin(th_an*np.pi/180.0)/AUinCM

plot x/y coords
fig, ax = plt.subplots(l, figsize = (10, 10))
fig.suptitle('Coordinates Plot')

ax.plot(x an, y _an, 'b--', linewidth=5)
ax.plot(0.0, 0.0, 'kx")
ax.set xlabel('x in AU'")

ax.set ylabel('y in AU')

ax.set xlim(-2.5, 2.5)
ax.set _ylim(-2.5, 2.5)

plot Euler's solution
ax.plot(r[:,0]/AUinCM, r[:,1]/AUinCM)

plt.show()

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Part]l _programming_analytical VSNumeric_lesson03.ipynb?download=false 79

7/23/2019

_Partl_programming_analyticalVSNumeric_lesson03

Coordinates Plot

y in AU

-1 4

X in AU

Exercise

How small does At need to be for an accurate solution? How many orbits can you get?

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Part]l _programming_analytical VSNumeric_lesson03.ipynb?download=false 8/9

7/23/2019 _Part]_programming_analyticalVSNumeric_lesson03

Exercises

Let's calculate some orbits, analytical and numerical for our planetary system. Again, we'll assume our Sun is
massive and centered at the origin, and the planets are much less massive and orbit around the Sun.

1. Calculate the orbit of the Earth

+ T, the orbital period = 365 days, i.e. 1 year
» the eccentricity, ecc = 0.02

243
Recal: T = , [2z¢
GMSTHF

2. Bonus - others. Note, you probably want to write a function:

e Mercury, T = 0.48 years, eccentricity = 0.21

* Venus, T = 0.62 years, eccentricity = 0.01

e Mars, T = 1.88 years, eccentricity = 0.09

» Jupiter, T = 11.86 years, eccentricity = 0.05
o Saturn, T = 29.46 years, eccentricity = 0.05

+ Uranus, T = 84.02 years, eccentricity = 0.05
* Neptune, T = 164.8 years, eccentricity = 0.01
o Pluto, T = 248.0 years, eccentricity = 0.25

Questions: how does At and change with eccentricity and period?

Plot the whole solar system, both analytically and numerically. Think strategically - what things do you need
to make as "variables" in your function? (T, ecc... what else?)

In []:

In []:

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Partl_programming_analytical VSNumeric_lesson03.ipynb?download=false 9/9

