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Two-body motion with any size masses

Let's update our solvers for full 2-body motion, and put in some checks for the conservation of energy and

momentum.

We'll start with our usual list of constants and load our usual libraries:

In [1]:

In [2]:

# unit conversions

MassOfSun = 2e33 # g

MassOfJupiter = 1.898e30 # g

AUIinCM = 1.496el3 # cm

kmincm = le5 # cm/km

G = 6.674e-8 # gravitational constant in cm”3 g"-1 s"-2

import numpy as np
import matplotlib.pyplot as plt
¢matplotlib inline

Let's start with a sun and a jupiter:

In [3]:

We'll start with one particle at rest, like we had before, and build from there. We'll use our oritinal rp and vp:

In [4]:

# in solar masses

#M1 = 1.0

M1l = 0.0009 # jupiter is 0.09% of the mass of the sun
M2 = 1.0

rp = 1.0 # in AU
vp 35.0 # in km/s

We'll convert all of our parameters:

In [5]:

M1 = Ml*MassOfSun

M2 = M2*MassOfSun
vp = vp*kmincm
rp = rp*AUinCM

Let's look at our original acceleration code:
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In [11]: | # mStar is the mass of the central star, rStar is the *vector*

# from planet to mass of star

def calcAcc(mStar, rStar):
mag r = (rStar[0]**2 + rStar[l]**2)**0.5
mag a = -G*mStar/mag_r**2
# how about direction? It's along rStar
# but we need to make sure this direction
# vector is a "hat" i.e. a unit vector
# We want the direction only:
unitVector = rStar/mag r
return mag_a*unitVector

We'll need to update this for 2 bodys - take in 2 radii. We'll need to solve for 2 motions - for body #1 and body

#2.

We'll start with a function that calculates the mass of particle 2 on particle 1:

In [12]: | # force/mass for particle ml
# m2 = mass of other particle
# rl = 3-vector for location of particle 1
# r2 = 3-vector for location of particle 2

#def calcAcc(mj, ri, rj):
# mag r = np.sqrt( (ri-rj).dot(ri-rj) )
# return -G*mj*(ri - rj)/mag r**3.0

def calcAcc(m2, rl, r2):
mag r = np.sqrt( (rl[0]-r2[0])**2 \
+(rl[1]-r2[1])**2 )#\
#+H(rl[2]-r2[2])**2 )

mag a = -G*m2/mag_r**2

# unit vector points from particle 1 -> particle 2
unitVector = (rl - r2)/mag r

# return

return mag_ a*unitVector

What about the acceleration of particle 2 from the force of gravity #1? If we look at the above - it's the mirror of

the acceleration of #1 because of #2 - so, let's re-write this generally:

localhost:8888/nbconvert/html/csci-p-14110/lesson03/_Part2_programming_full2Body_lesson02_notes.ipynb?download=false

2/5



7/23/2019 _Part2_programming_full2Body_lesson02_notes

In [13]: # 2 -> 7
# 1 -> 1
def calcAcc(mj, ri, rj):
mag r = np.sqrt( (ri[0]-rj[0])**2 \
+(ri[l]1-rj[1])**2 )#\
#+(ri[2]-rj[2])**2 )

mag a = -G*mj/mag r**2

# unit vector points from particle 1 -> particle 2
unitVector = (ri - rj)/mag r

# return

return mag_a*unitVector

men m_n

# this is now the acceleration of particle "i" due to particle "j

Exercise

Use this and the Euler's Method loop we used before to calculate updates for both particles.
Assume rp, vp are the distances of particle 1 and the initial radius and velocity of particle #2 are 0.
Bonus: how similar is this solution to the analytical one for a jupiter mass and a sun?

Bonus: change one mass to a solar mass, what happens now?

Bonus: what if both particles are moving? How would you impliment that?

Some starter hints:

In [13]: import numpy as np
import matplotlib.pyplot as plt
¢matplotlib inline

# unit conversions

MassOfSun = 2e33 # g

MassOfJupiter = 1.898e30 # g

AUinCM = 1.496el3 # cm

kmincm = le5 # cm/km

G = 6.674e-8 # gravitational constant in cm”3 g"-1 s"-2

In [14]: | # in solar masses

#M1 = 1.0
M1 = 0.0009
M2 = 1.0

In [15]: rp = 1.0 # in AU
vp 35.0 # in km/s

In [l6]: # our initial arrays are now 2D and in 2D!
r 0 = np.array([[rp, 0], [0, O]])
v_0 = np.array([[0, vp], [0, 01])
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In [17]: | # let's try to estimate how many steps we might need

# we can estimate a ~ initial distance
a = np.sqgrt( ((r_0[0,:]-r O[1,:])**2).sum() )

Porb = np.sqrt( 4.0*np.pi**2.0*a**3.0/(G*(M1+M2)) )
delta t Porb*0.0001

n_steps = int(np.round(Porb/delta t))=*10

Quantifying how well we conserve things

In [19]: # for 2 bodies:

# energy
# I'll write this a little fancy
def calcE(ml, m2, rl, r2, vl, v2):
mag r = np.sqrt( (rl-r2).dot(rl-r2) )
return 0.5*%(ml*vl.dot(vl) + m2*v2.dot(v2)) - G*ml*m2/mag r
# angular momentum
def calcL(ml, m2, rl, r2, vl, v2):
L = ml*np.cross(rl,vl) + m2*np.cross(r2,v2)
#mag L = np.sqrt( L.dot(L) )
# for 2 dimensions
mag L = np.sqrt(L*L)
return mag L

Exercise:

Use the above to plot the energy and momentum as a function of time. What do you notice?

Bonus: redo for different timesteps, similar masses, etc

In [ ]:
In [ ]:
In [ ]:

In [ ]:
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1. Matplotlib plots ? then exercises?

» see also https://sites.google.com/a/ucsc.edu/krumholz/teaching-and-courses/python-15/class-3
(https://sites.google.com/a/ucsc.edu/krumholz/teaching-and-courses/python-15/class-3)

2. Reading files

» see https://sites.google.com/a/ucsc.edu/krumholz/teaching-and-courses/python-15/class-4
(https://sites.google.com/a/ucsc.edu/krumholz/teaching-and-courses/python-15/class-4)
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