7/24/2019 _Part2_hermite_in2d_nbody

Day 2: 4th order solvers vs. 2nd order

Since we've worked so hard do make our solver, let's never have to do it again, by using it as an external
function. For this we'll use the hermite library you can download from the day 4 webpage.

Let's import our usual things:

In [2]: import numpy as np
import matplotlib.pyplot as plt
$matplotlib inline

Let's also use the same parameter's we've used before:

In [3]: | # in solar masses
M1 = 0.0009 # Jupiter
M2 = 1.0 # sun

initial parameters

rp = 1.0 # in AU
vp = 35.0 # in km/s

Start with our defaults for time:

In [4]: delta t = 1leb
n_steps 5000

Now let's import some functions from the hermite library! Remember: this library has to be in the same directory
as this current .ipynb file.

In [5]: from hermite_library import do hermite

The calling sequence for this will be a little different. We will assume that we have a central star (in M, or solar
masses) and then an array of planet masses in Jupiter masses (M).

Though we'll input 3D positions and velocities, we'll only populate the x & y coordinates... for now...

We can add other planets pretty simply - by adding them to our array of planet initial positions and velocities!

localhost:8888/nbconvert/html/csci-p-14110/lesson04/_Part2_hermite_in2d_nbody.ipynb?download=false 1/4

7/24/2019

In [12]:

_Part2_hermite_in2d_nbody

star mass = 1.0 # stellar mass in Msun
planet masses = np.array([1.0,

0.5]1) # planet masses in Mjupiter

[x,y,2] coords for each planet in AU
planet initial position = np.array([[1.0, O.
[0.0, 1.

0, 0.0],
0, 0.011)

planet's velocity at each position in km/s
planet initial velocity = np.array([[0.0, 35.0, 0.0],
[-35.0, 0.0, 0.011)

note: this assumes that the star is at (0, 0, 0) and has zero

1initial velocity

We output our variables as:

1. radius is output in AU

2. velocity is in km/s

3. time is in seconds

4. energy is normalized to its initial condition

In [13]:

calculate!

h is for hermite!

r h, v h, t h, e h = do hermite(star mass,
planet masses,
planet initial position,
planet _initial velocity,

tfinal=delta t*n steps, Nsteps=n_steps)

NOTE: here tfinal is (delta t) X #steps from the Euler runs

#t h = t h/(365.+%24%60%60)

localhost:8888/nbconvert/html/csci-p-14110/lesson04/_Part2_hermite_in2d_nbody.ipynb?download=false

2/4

7/24/2019

In [15]:

_Part2_hermite_in2d_nbody

let's plot!
fig, ax = plt.subplots(l, 2, figsize = (10*2, 10))
fig.suptitle('Coordinates Plot')

ax[0].set xlabel('x in AU')
ax[0].set ylabel('y in AU')

plot Hermite solution, with line width = 3
ax[0].plot(r_h[0,0,:], r h[O0,1,:], 1lw=3)

particle 2

ax[0].plot(r _h[1,0,:], r h[1,1,:], 1lw=3)

particle 3 (the star)

ax[0].plot(r h[2,0,:], ¥ h[2,1,:], 1lw=3)

ax[l].set xlabel('Time in seconds')
ax[l].set _ylabel('Energy')
re-norm energy

ax[l].plot(t _h, e h)

plt.show()

Coordinates Plot

le-9-36lle—4

05

-2.0 -15 -10 -0.5 00 05 10 15 o 1
xin AU

Take some time to play with the 3-body system here

Then:

2

Time in seconds

3

1e8

But what if we want to change our number of masses but we don't wanna keep having to add plots? Our old
friend the for-loop!

localhost:8888/nbconvert/html/csci-p-14110/lesson04/_Part2_hermite_in2d_nbody.ipynb?download=false

3/4

7/24/2019 _Part2_hermite_in2d_nbody

In [18]: fig, ax = plt.subplots(l, 2, figsize = (10*2, 10))
fig.suptitle('Coordinates Plot')

ax[0].set xlabel('x in AU')
ax[0].set _ylabel('y in AU')

plot Hermite solution, with line width = 3
for i in range(r_h.shape[0]):

particle 1

ax[0].plot(r_h[i,0,:], r_h[i,1,:], 1lw=3)

ax[l].set xlabel('Time in seconds')
ax[l].set ylabel('Energy')

re-norm energy

ax[1l].plot(t_h, e h)

plt.show()

Coordinates Plot

le-9-3.61le-4

15

05

yin AU
Energy

20 s 1o 05 00 05 10 15 0 1 2 3 2 s
xin AU Time in seconds le8

In [17]: r_h.shape

Out[171: (3, 3, 5000)

In []

localhost:8888/nbconvert/html/csci-p-14110/lesson04/_Part2_hermite_in2d_nbody.ipynb?download=false 4/4

