7/26/2019 _Part2_planetsIn3D_lesson05

Day 5, Part 2 - Planets in 3D and plotting 3D things

In [26]: # usual things:
import numpy as np
import matplotlib.pyplot as plt
#from mpl toolkits.mplot3d import Axes3D

$matplotlib inline
#8matplotlib notebook

There are a few different ways we can make some systems in 3D. The easiest is to take our original "by hand"
systems and just add in a 3D component, and call our solver with the 3D tag. We can also simulate a kepler
system in 3D as there is a 3D component to most if not all planetary systems. We'll try each of these.

1. By-Hand Planetary systems in 3d

We'll start by taking our original Hermite solving datasets and inputting things in 3D:

In [27]: star mass = 1.0 # stellar mass in Msun
planet masses = np.array([1.0, 0.5]) # planet masses in Mjupiter

[X,y,2] coords for each planet in AU

NOTE: no z-coords! These will be set to zero later on

if you make them non-zero

planet initial position = np.array([[1.0, 0.0, 1.0],
[1.0, 0.0

planet's velocity at each position in km/s
NOTE: no z-velocities! These will be set to zero later on
if you make them non-zero
planet initial velocity = np.array([[0.0, 35, 0.0],
[0.0, 15.0, 15.0711)

note: this assumes that the star is at (0, 0, 0) and has zero
initial velocity

We then call the Hermite solver as follows:

localhost:8888/nbconvert/html/csci-p-14110/lesson05/_Part2_planetsIn3D_lesson05.ipynb?download=false

1/8

7/26/2019 _Part2_planetsIn3D_lesson05

In [28]: from hermite_library import do hermite
r h, v h, t h, Eh = do hermite(star mass,
planet masses,
planet initial position,
planet initial velocity,
tfinal=1le7, Nsteps=8800,
threeDee=True) # so sneaky, here the whol
e time!

In [29]: # let's plot!
fig, ax = plt.subplots(l, 2, figsize = (10*2, 10))
fig.suptitle('Coordinates Plot')

ax[0].set xlabel('x in AU')
ax[0].set ylabel('y in AU')

recall:
r h[NUMBER OF PARTICLES, NUMBER COORDINATES (X,Y,Z), NUMBER OF TIMESTE
PS]
for i in range(len(planet masses)):
ax[0].plot(r_h[i,0,:], r h[i,1,:], 1lw=3)

ax[l].set xlabel('Time in years')
ax[l].set ylabel('Energy')

re-norm energy

ax[1].plot(t_h, E_h)

plt.show()

Coordinates Plot

le-11-2.512748e-4

20

yin AU
Energy

05

00

-04 -02 00 02 04 06 08 10 00 02 04 06 08 10
xin AU Time in years 1e7

Ok, but wait. This is only plotting x vs. y. How can we show all coordinates? We'll get more into 3D plots next
week, but for now, we can plot all combinations by having more than one coordinates plot:

localhost:8888/nbconvert/html/csci-p-14110/lesson05/_Part2_planetsIn3D_lesson05.ipynb?download=false 2/8

7/26/2019 _Part2_planetsIn3D_lesson05

In [30]: | # now make 4 plots instead of 2, and make it 4x wide as tall
fig, ax = plt.subplots(l, 4, figsize = (10*4, 10))
fig.suptitle('Coordinates Plot')

X vs Y means Oth vs 1lst coordinate axes
recall:
r h[NUMBER OF PARTICLES, NUMBER COORDINATES (X,Y,Z), NUMBER OF TIMESTE
PS]
ax[0].set xlabel('x in AU')
ax[0].set ylabel('y in AU')
for i in range(len(planet masses)):
ax[0].plot(r_h[i,0,:], r h[i,1,:], 1lw=3)

make *last* plot energy
ax[3].set xlabel('Time in years')
ax[3].set _ylabel('Energy')

re-norm energy

ax[3].plot(t _h, E h)

plt.show()

aaaaaaaaaaaa

enersy

Now we'll fill in the other axis combinations:

localhost:8888/nbconvert/html/csci-p-14110/lesson05/_Part2_planetsIn3D_lesson05.ipynb?download=false

3/8

7/26/2019 _Part2_planetsIn3D_lesson05

In [31]: | # now make 4 plots instead of 2, and make it 4x wide as tall
fig, ax = plt.subplots(l, 4, figsize = (10*4, 10))
fig.suptitle('Coordinates Plot')

X vs Y means Oth vs 1lst coordinate axes
ax[0] means first plot
recall:
r h[NUMBER OF PARTICLES, NUMBER COORDINATES (X,Y,Z), NUMBER OF TIMESTE
PS]
ax[0].set xlabel('x in AU')
ax[0].set _ylabel('y in AU')
for i in range(len(planet masses)):
ax[0].plot(r h[i,0,:], r_h[i,1,:], lw=3)

X vs Z means 0Oth vs 2nd coordinate axes

ax[1] means 2nd plot

ax[l].set xlabel('x in AU')

ax[l].set ylabel('z in AU')

for i in range(len(planet masses)):
ax[1l].plot(r_h[i,0,:], r h[i,2,:], 1lw=3)

Y vs Z means 1th vs 2nd coordinate axes

ax[2] means 3rd plot

ax[2].set xlabel('y in AU')

ax[2].set ylabel('z in AU')

for i in range(len(planet masses)):
ax[2].plot(r_h[i,1,:], r_h[i,2,:], lw=3)

make *last* plot energy
ax[3].set xlabel('Time in years')
ax[3].set _ylabel('Energy')

re-norm energy

ax[3].plot(t_h, E_h)

plt.show()

‘‘‘‘‘‘‘‘‘‘‘‘

So this gives us additional information. It is still hard to see exactly what is going on, but we are getting a little
bit more information. Next week we'll do some 3D movies and see what we can gain from them, but for now,
we'll stay with these.

localhost:8888/nbconvert/html/csci-p-14110/lesson05/_Part2_planetsIn3D_lesson05.ipynb?download=false 4/8

7/26/2019 _Part2_planetsIn3D_lesson05

We can also do the kepler system orbits in 3D, again with a few assumptions folded in. To do this we'll use the
inclination of the orbit as well:

First we'll read in the kepler data before from one of our systems. We have to make sure we have the
convert kepler data.py fileinour .ipynb directory.

In [32]: from convert_kepler_data import read kepler data
kepler data = read kepler data('keplerlOldata.txt')

In [33]: from convert_kepler_data import convert kepler data

star mass, \

planet masses, \

planet initial position, \

planet initial velocity, ecc = convert kepler data(kepler data, use incl
ination_ 3d=True)

Let's quickly remind ourselves what this system looks like:

In [34]: star mass

out[34]: 1.17

In [35]: planet masses

Out[35]: array([0.16, 0.01])

localhost:8888/nbconvert/html/csci-p-14110/lesson05/_Part2_planetsIn3D_lesson05.ipynb?download=false 5/8

7/26/2019 _Part2_planetsIn3D_lesson05
In [36]: planet initial position, planet initial velocity

Out[36]: (array([[-0.0433236 , O. , 0. 1,
[0.06672647, 0.01359057, 0.006437011]),
array([[0. , —141.87933522, 0. 1,
[-24.65587511, 121.05448789, 0. 11))

Ok, this is a 2 planet system with a central star of 1.17 M o masses (i.e. 1.17 times the mass of the Sun).

Let's do a sim!

In [37]: # solve
h is for hermite!
r h, v h, t h, Eh = do hermite(star mass,
planet masses,
planet initial position,
planet initial velocity,
tfinal=1e4*5000, Nsteps=5000,
threeDee=True)

We can then use the exact same plotting routine we used before to plot this:

localhost:8888/nbconvert/html/csci-p-14110/lesson05/_Part2_planetsIn3D_lesson05.ipynb?download=false

6/8

7/26/2019 _Part2_planetsIn3D_lesson05

In [38]: | # now make 4 plots instead of 2, and make it 4x wide as tall

fig, ax = plt.subplots(l, 4, figsize = (10%*4,
fig.suptitle('Coordinates Plot')

X vs Y means 0Oth vs 1st coordinate axes
ax[0] means first plot
recall:

r h[NUMBER OF PARTICLES, NUMBER COORDINATES (X,Y,Z), NUMBER OF TIMESTE

PS]

ax[0].set xlabel('x in AU')

ax[0].set _ylabel('y in AU')

for i in range(len(planet masses)):
ax[0].plot(r_h[i,0,:], r h[i,1,:], 1lw=3)

X vs Z means 0Oth vs 2nd coordinate axes

ax[1] means 2nd plot

ax[l].set xlabel('x in AU')

ax[l].set ylabel('z in AU')

for i in range(len(planet masses)):
ax[l].plot(r_h[i,0,:], r_h[i,2,:], 1lw=3)

Y vs Z means 1th vs 2nd coordinate axes

ax[2] means 3rd plot

ax[2].set xlabel('y in AU')

ax[2].set ylabel('z in AU')

for i in range(len(planet masses)):
ax[2].plot(r_h[i,1,:], r_h[i,2,:], lw=3)

make *last* plot energy
ax[3].set xlabel('Time in years')
ax[3].set _ylabel('Energy')

re-norm energy

ax[3].plot(t_h, E_h)

plt.show()

o0

o0k

10))

-0 00050

~o0s0ss

000060

~o.0s0065

Hi

Don't forget, if | like this simulation, | can save it!

In [39]: from hermite_library import save hermite solution to file
save_hermite solution_to file("MyPlanetarySystem2.txt",
t h, Eh, rh, v h)

localhost:8888/nbconvert/html/csci-p-14110/lesson05/_Part2_planetsIn3D_lesson05.ipynb?download=false

7/8

7/26/2019 _Part2_planetsIn3D_lesson05

Exercise

You have a few options: you can make your own systems "by hand" in 3D and go from there - making sure to
save any simulations you like.

You can play more with this Kepler system or the Kepler-11 data set (or go find your own on the exoplanet
archive).

You can start with a Kepler system and then add another planet "by hand" to see if you can disrupt the system!

localhost:8888/nbconvert/html/csci-p-14110/lesson05/_Part2_planetsIn3D_lesson05.ipynb?download=false

8/8

