
ar
X

iv
:a

st
ro

-p
h/

06
01

23
2v

1
 1

1
Ja

n
20

06

Dense Stellar Systems as Laboratories for

Fundamental Physics

Piet Hut

Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract

Galactic nuclei and globular clusters act as laboratories in which nature experiments
with normal stars, neutron stars and black holes, through collisions and through
the formation of bound states, in the form of binaries. The main difference with the
usual Earth-based laboratories is that we cannot control the experiments. Instead,
we have no choice but to create virtual laboratories on Earth, in order to simulate
all the relevant physics in large-scale computational experiments. This implies a
realistic treatment of stellar dynamics, stellar evolution, and stellar hydrodynamics.

Each of these three fields has its own legacy codes, workhorses that are routinely
used to simulate star clusters, stars, and stellar collisions, respectively. I outline the
main steps that need to be taken in order to embed and where needed transform
these legacy codes in order to produce a far more modular and robust environment
for modeling dense stellar systems.

The time is right to do so: within a few years computers will reach the required
speed, in the Petaflops range, to follow a star cluster with a million stars for ten
billion years, while resolving the internal binary and multiple star motions. By that
time simulation software will be the main bottleneck in our ability to analyze dense
stellar systems. Only through full-scale simulations will we be able to critically test
our understanding of the ‘microphysics’ of stellar collisions and their aftermath, in
a direct comparison with observations.

1 Gravitational Laboratories

In experimental high-energy physics,
there are two ways to probe elemen-
tary particles. One way is by studying
the properties of their bound states,
which may be more stable or more
easily accessible than unbound par-

Email address: piet@ias.edu (Piet
Hut).

ticles. The other way is by smashing
particles together, and to study the
remnants emerging from such colli-
sions. In this way, we have learned an
enormous amount in the last century
about the electroweak and strong in-
teractions. Gravity, however, has re-
mained almost totally elusive.

The problem is related to the weak-
ness of the gravitational force, which

Preprint submitted to Elsevier Science 4 February 2008

http://arXiv.org/abs/astro-ph/0601232v1

implies that we have to add quite
a number of particles before grav-
ity can dominate. A self-gravitating
bound state of nuclear matter, a neu-
tron star, contains some 1057 parti-
cles, in a ball with a diameter of order
10 km, and a mass like that of the
sun. And the only known way to pro-
duce a purely gravitational object, a
black hole, of moderate size, is to let
a star implode to form an object of
several solar masses with a horizon
size of the order of ten kilometers or
so. Alas, we have no laboratories in
which to create such objects.

Fortunately, nature has been kind
enough to provide us with labs in
the sky. And we don’t have to look
far away, either. We are accustomed
to observe quasars and gamma ray
bursts at distances measured in Gi-
gaparsecs, but our local gravitational
laboratories are a million times closer
than that. There are dozens of them
in our very own Milky Way galaxy,
close enough to have a good peek to
see what is going on.

At a distance of several kiloparsecs,
a number of globular clusters have
a high enough central density to let
neutron stars interact and collide
with other stars, often forming ex-
otic binaries as byproducts. And at a
distance of less than ten kiloparsecs,
our galactic nucleus contains the
mother of all gravitational laborato-
ries, where a central massive black
hole of a few million solar masses
is surrounded by swarms of neutron
stars, black holes and all kind of stars,
some of them very unusual looking
and all of them prone to collisions.

So here we are, with great gravita-
tional laboratories, just around the
corner of where we live, cosmolog-
ically speaking, and we are accu-
mulating a treasure trove of high-
precision observational data. The
main problem in analyzing the data
is that we came in late. Most of the
experimental runs that we are cur-
rently watching were started at least
millions and sometimes billions of
years ago. In order to interpret the
data correctly, we have to recon-
struct what has happened during the
time that the experiments have been
underway.

For some purposes, we can make
back-of-the-envelope estimates to
describe the essence of some of the
main physical processes involved. For
more detailed investigations, how-
ever, we have no choice but to con-
duct computer simulations in which
we reconstruct the history of the
stellar system under consideration.
In many astrophysical simulations,
this task neatly breaks up into the
task of simulating the individual ele-
ments, such as stars and binaries on
the one hand, and the star system on
the other. In the case of dense stellar
systems, however, by definition such
a clear separation is not possible.

Dense stellar systems are character-
ized by an ecological network, where
everything influences everything. In
a globular cluster, for example, dy-
namical interactions between passing
stars can form new binaries and mod-
ify the properties and even the mem-
bership of existing binaries. At the
same time, internal changes in bina-
ries, through mass overflow or coa-

2

lescence, feed back into the energy
budget of the star cluster as a whole.
In fact, most globular clusters prob-
ably have more gravitational bind-
ing energy locked up in internal bi-
nary degrees of freedom than in the
bulk binding energy of the cluster as a
whole. Even a partial access to those
internal ‘microscopic’ degrees of free-
dom can greatly influence the ‘macro-
scopic’ behavior of a star cluster as a
whole.

Progress in our understanding of
dense stellar systems is therefore an
extreme form of two-step process.
We can gain a considerable insight in
the basic processes that are at work,
through dimensional analysis and
back-of-the-envelope calculations, as
was done very successfully in the
seventies and to some extent in the
eighties. Having identified the main
processes, we then suddenly faced
a wall: in order to make significant
further progress, we had no choice
but to model the whole ecological
network. This has proved daunting:
we are still only in the initial phases
of living up to this challenge. The
current paper provides an outline of
how we will plunge into this problem
fully during the next ten years.

2 Complexity

It sounds so simple: in order to make
a large-scale simulation of a system
of interacting stars, why not just
hook together existing codes, each
of which takes care of some of the
physics? After all, the first stellar
evolution codes were written in the

fifties, and the first stellar dynamics
codes in the sixties. By the seven-
ties, both fields were reaching a de-
gree of maturity, and also the first
simulations of stellar collisions were
carried out. In the thirty years since
then, computer speed has increased
a million-fold. What we could do on
the level of stellar evolution for a few
stars back in the seventies, we should
now be able to do easily for a million
stars. What is holding us back?

The answer can be given in one word:
complexity.

The one single bottleneck in modern-
day technology is software. While
hardware is getting faster, we seem
to be almost lost with respect to
the task of writing software to make
good use of this speed. The bottom
line is that we have not yet learned
some of the basic principles of good
software writing.

One fundamental problem which we
simply don’t know how to handle
yet is pattern recognition. Letting
a computer recognize the identity
of an individual human face from a
photograph is notoriously difficult,
even for a computer that executes
far more elementary operations per
second than the human brain fires
neurons per second. Some progress
is being made, using more or less
brute force, but clearly we haven’t
yet found an efficient way of dealing
with this challenge.

An example where brute force did
work is chess, where computers can
now easily beat the strongest play-
ers. But a problem such as go (a

3

traditional board game, weichi in
Chinese, (i)go in Japanese, baduk in
Korean), has also attracted consid-
erable attention, but with very little
success: even a beginning go player,
having practiced the game for only
a few months, has a good chance to
beat the world’s strongest go playing
program.

Another fundamental problem is
scalability. Once we have written a
single computer code, or a whole
software package, the challenge to
let these codes grow to cover a more
complex situation is enormous. Ad-
ditionally the need for more CPU-
cycles will require to distribute the
execution over a network, which is
extremely difficult to accomplish, if
the system is not designed as a dis-
tributed system, which is often not
(or only partly) the case. As a result,
software projects are almost always
over time, over budget, contain lots
of bugs, are not sufficiently compati-
ble with other programs or even with
themselves; the list of grievances goes
on and on.

Here, too, it seems pretty clear that
we are still lacking insight in some
fundamental principles, yet to be dis-
covered. And this is not surprising. A
computer is fundamentally different
from other tools that we have built
over the millennia. An airplane or a
spaceship, while a modern invention,
still resembles in some ways a boat,
and there is an almost continuous
evolution in vehicles of transporta-
tion, from horse-drawn carriages to
trains and automobiles to planes
and spacecraft. The switch from an
abacus to a computer, however, is

qualitatively different.

An abacus is a pure object, manip-
ulated by a human. A computer, in
contrast, contains a program that
effectively turns the machine into
a type of subject, an autonomous
agent, manipulating itself. Who
knows, it may well take another half
century before we understand how
to operate this new type of tool on a
deep enough level to perform efficient
pattern recognition and scaling; all
we know is that we haven’t succeeded
yet in the last half century.

In the specific case of computational
astrophysics, we find a situation that
is even more problematic that it is
for software development in general.
Of course we do not really know yet
how to develop software, something
that is true for all fields. But what is
worse, it seems that in astrophysics
by and large the community does
not even know that we do not know.
As a result, students in astrophysics
learn a lot about theory and obser-
vations, but preciously little about
simulations.

3 Simulations as the Third Pil-

lar of Science

Astrophysics is not the only area in
science where simulations have been
neglected in the standard curricu-
lum. The main problem seems to
be that computer simulations still
tend to be seen as part of theory,
in a dichotomy between theory and
experiment, or in the case of astron-
omy, a dichotomy between theory

4

and observation.

It is true that the earliest computer
calculations were more or less an
extension of pen-and-paper calcula-
tions, albeit millions of times faster
already in the nineteen sixties. But
by now, computers are a billion
times a million times faster than hu-
mans, and this quantitative growth
has definitely made a qualitative dif-
ference. While setting up a physics
simulation still resembles work in
theoretical physics, analyzing the re-
sults of a simulation has much more
in common with experimental or ob-
servational physics. And writing the
software for a sophisticated multi-
scale multi-physics simulation envi-
ronment is not that different from
designing an equally sophisticated
laboratory or telescope.

Clearly, then, a standard education
program in (astro)physics should
contain training in all three prongs
of modern physics: theory, experi-
ment, and simulation. Nobel laure-
ate Ken Wilson was one of the first
physicists to make a clarion call, a
quarter century ago, by describing
computer simulations as the third
paradigm of science, but his message
still has not come across clearly. It
is interesting to ask why this is so;
if we understand the reasons better,
we might be in a better position to
do something about it.

I think the main problem is the mag-
nitude of the cultural step required
to accept simulations as a true pil-
lar of natural science. Computational
science is not a branch of science, but
rather a pillar. We would not call the-

ory a ‘branch of science’, nor would
we call laboratory work a ‘branch’.
And when we look back at history, we
see that accepting a new ‘pillar’ has
always taken a few generations.

The Greeks started theory, in full
form with Euclid’s axiomatic ap-
proach, more than two thousand
years ago. However, the Greeks
lacked an equal appreciation for ex-
periments, and it was only around
the time of Galileo, four hundred
years ago, that experiment and the-
ory were joined in the conception of
modern science. I am not an expert
in the history of science, but I am
sure that this addition of a second
pillar must have taken a few gener-
ations before everything was shaken
down comfortably.

The idea of keeping a note book for
your lab experiments, and sharing
what you have found openly and in
all necessary detail with others, must
have been very different from the ap-
proach of the Medieval guilds whose
members kept their trade secrets to
themselves. The scientific program,
in contrast, has been ‘open source’
from the beginning. And this has
been the great strength of science,
that new ideas could be immediately
tested by anyone capable of doing so,
a process that has led to rapid and
robust progress.

We are currently in the middle of a
transition to adding simulations as a
third pillar to science, and I expect
that it will take a few generations be-
fore we have found a comfortable and
generally accepted way to make all
three pillars fit together well. Perhaps

5

by 2050 we will look back at the cur-
rent confusion and wonder what took
us so long. The answer is: it takes
much longer to change the way in
which you do something than what
you are doing.

4 The Need for a Whole New

Approach

In astrophysics, and in physics in
general, almost all computer sim-
ulations have been carried out in
the same mode as theoretical in-
vestigations, as largely individual
endeavors. While there may be col-
laborations in writing papers, by and
large a single person is responsible
for writing the software for a simu-
lation. After several years, someone
else may take over such a code, and
develop it further, but at any given
time, typically only one person is
actively developing the software.

If we compare this approach to that
of experimentation or observation,
we see a striking difference. Two
hundred years ago it may well have
been possible to build your own tele-
scope, but already a hundred years
ago that would have been out of the
question. Observation is team work:
no individual can possibly prepare
the infrastructure for even a single
cutting-edge telescope at a single
site.

It is inevitable that the same will be-
come true for simulations. In the case
of experimentation and observation,
the complexity of the hardware grew
in such a way that a single person

could no longer take care of all of it.
And in the case of simulations, the
complexity of the software is rapidly
reaching that same point of no re-
turn: within the next ten years, no
major field of computational astro-
physics will remain simple enough for
a graduate student to write a com-
plete simulation code from scratch,
something that is currently still
(barely) doable in some fields.

This does not mean that the inspi-
ration for a new approach cannot
come from a single individual. On
the contrary. Most successful designs
of novel telescopes or novel detectors
have embodied the vision of a lead-
ing expert, with enough experience
and inspiration to convince others
to collaborate to work out the vision
in all necessary detail, from funding
to construction to maintaining the
whole operation. But even if the in-
spiration can be traced to an individ-
ual, the execution of a new observing
project involves tens or more likely
hundreds of people.

While the transition from mainly
single-person efforts to team work
is inevitable in the field of compu-
tational astrophysics, there are a
few important stumbling blocks that
make the transition unnecessarily
hard. One stumbling block is the
fact that thesis advisers learned their
trade in a time when simulations
were by definition single-person af-
fairs, and it may be difficult for them
to conceive of training their own stu-
dents in a radically different way.

Another important stumbling block
is recognition: if a graduate student

6

would make an important contri-
bution to a team effort of software
writing, it is not at all clear whether
that person would get rewarded suffi-
ciently, especially if the science com-
ing out of the project will not start
up until years after the student re-
ceives a PhD. In contrast, a student
working on, say, the construction
of a gravitational wave detector or
a next-generation neutrino detector
can build a promising career well
before the first detections occur.

5 An Example: The Art of

Computational Science

A major unsolved problem, when
starting a team effort in setting up
a computational science project,
is how to communicate among the
project members. As mentioned
above, this is a problem that has not
been solved yet, either in industry or
in academia. What is clear, however,
is that an Open Source approach of-
fers the best guarantee for critical
testing and thereby for developing
robust code. With the critical eyes
of anyone in the world interested in
the project, major and minor flaws
are likely to be detected soon, a lot
sooner than if the project would be
cloaked in secrecy.

We are currently engaged in an at-
tempt to stretch the concept of Open
Source further, to what we call Open
Knowledge. The main idea is to pro-
vide not only open access to all the
computer source codes involved in a
project, but also to their knowledge
base. Such a complete disclosure re-

quires documenting the reasoning
and trial and error that went into the
production of all relevant codes. In
this way, the background knowledge
is made open as well, and others do
not have to repeat the same mistakes
– or, if they wish, they can critically
look at what was labeled as mis-
takes, to see whether there may still
be some mileage in those attempts,
after all.

In other words, besides the what and
how for any computer code, we also
provide the why: the motivation for
writing it in the way it was writ-
ten, within the context in which it
was conceived. This will give the
user more appreciation for the back-
ground of the structure chosen, and
most importantly, it makes the codes
extensible: it gives the user the abil-
ity to easily modify and extend the
codes presented, without running
into hidden snags and unstated as-
sumptions.

And what applies to user friendliness
also applies to collaborator friendli-
ness. The best way to guarantee that
collaborators can work together co-
herently on shared pieces of codes is
to document the background knowl-
edge to such an extent that new users
and collaborators alike can pick up
that knowledge quickly, without hav-
ing to ask their colleagues for any de-
tails.

We call our initiative The Art of
Computational Science, ACS for
short, and much more information
can be found on our web site (Hut &
Makino, 2003). The main novelty in
our approach is our use of dialogues,

7

Virtual Observatory

LSSTChandra

HST VLA SDSS
Hydrodynamics

Stellar Dynamics Stellar Evolution

starlab archive

CAVE

PLANETARIUM

visualization

GRAPE

data mining
Simulating Observations

of Simulations

starlab

Fig. 1. An example of a planned framework in which to carry out, analyze, archive,
and present the results of simulations in dense stellar systems.

to provide the ‘open knowledge’
structure. With our aim of listing far
more background information than
is usually done in code comments
and manual pages, we were faced
with the challenge to package that
extra information in such a way that
it would not just be an unstructured
and boring list of technical details.

After some experimentation, we de-
cided that a dialogue structure would
capture both the spirit and the de-
tails of the development process. We
have tested this approach by using
some of our dialogue manuscripts

while teaching a couple N-body sum-
mer schools, during the last two
years, and we have been very encour-
aged by the reactions of the students.
Clearly, our material has filled a gap
in the market, in making explicit
what until now has mainly been an
oral tradition of how to set up stellar
dynamics experiments from scratch.

6 Dense Stellar Systems

Coming back to our main topic,
let us list the ingredients that are

8

needed for the simulation of dense
stellar systems. When a star cluster
is dense enough for individual stars
to collide, we need a hydrodynam-
ics code to model such collisions on
a dynamical time scale. In addition,
we need a stellar evolution code to
describe the subsequent evolution of
the merger products, on a thermal
time scale and beyond. And in order
to model the star cluster as a whole,
we need a stellar dynamics code to
follow the orbits of all the stars.

In addition to these three ingredi-
ents, we need to visualize the com-
plex processes that occur during the
evolution of a dense stellar system,
on all scales of interest, from the sys-
tem as a whole down to the details
of the modification in, say, nuclear
burning inside single stars and bi-
naries affected by encounters. We
also need a system to archive long
runs, and to make them available for
users, theorists as well as observers.
Finally, to obtain simulation speeds
high enough to model the long-term
evolution of a million stars, it is es-
sential to use the fastest hardware, as
has been developed in the GRAPE
family of special-purpose computers.

The three areas of astrophysics men-
tioned above, stellar dynamics, stel-
lar evolution and hydrodynamics,
are all well developed in their own
right. Stellar dynamics and stel-
lar evolution each have a history of
half a century of simulations. The
hydrodynamics of stellar collisions,
in comparison, is much less devel-
oped. Each of these three fields are
briefly described below, followed by
an equally brief description of the

other three topics, special-purpose
computers, visualization, and an ac-
cessible archiving system. Figure 1,
adapted from the starlab review by
Hut (2003), presents a picture of
all six aspects of a framework for a
complete dense stellar systems lab.

7 Stellar Dynamics

The leading codes to simulate the
stellar dynamics of dense stellar sys-
tems are NBODY6 (Aarseth 2003)
and Kira (Portegies Zwart et al.
2001). Both codes are freely avail-
able.

The published history of computer
simulations of the N -body problem
starts with von Hoerner (1960), who
performed runs with 4, 8, 12, and 16
particles. Fig. 2, adapted from Fig.
3.1 in Heggie & Hut (2003), shows
achieved and predicted progress over
the 60-year time span since von
Hoerner’s work. The GRAPE-DR,
which is currently being built, is
expected to be fully operational in
2008, so we expect to publish results
of lengthy runs on the GRAPE-DR
by 2010. The next two generations of
GRAPE computers are expected to
finally bring us to full million-body
simulations, all the way through core
collapse and beyond.

Most of the progress in Fig. 2 comes
from Moore’s Law, which for an in-
crease of speed of a factor ten for ev-
ery five years would predict an in-
crease in speed of twelve orders of
magnitude over the sixty years de-
picted here. Since the cost of N-body

9

 10

 100

 1000

 10000

 100000

 1e+06

 1960 1970 1980 1990 2000 2010 2020

N

Date

von Hoerner

Terlevich

Inagaki

Aarseth & Heggie
Spurzem & Aarseth

Makino

Aarseth

Baumgardt et al.

GRAPE-DR

Next GRAPE

Next Next GRAPE

Fig. 2. Number of particles used in N-body simulations up to and beyond core
collapse, as a function of year of publication. The dot labeled Makino refers to
calculations using the GRAPE-4. The circled dot denotes work in progress, using the
GRAPE-6. The stars indicate predicted years of publication for runs using computers
that are currently under development or planned to be built.

calculations in terms of CPU time
scales as TCPU ∝ N3 (pair-wise inter-
actions per crossing time scale as N2,
and the relaxation time grows like
N), this translates into four orders of
magnitude in N . Effectively, the com-
bination of software improvements,
mainly by Aarseth and co-workers,
and hardware improvements, mainly
by Makino and co-workers, has re-
sulted in an extra factor of ten in N ,
or a speed-up of a factor 1,000, be-
yond the simplest version of Moore’s
law.

Note the presence of three dis-
tinct roughly linear regimes: 1) von
Hoerner’s results, up to 1963; 2)
Aarseth’s and other’s results, up to
1996; 3) the results by Makino and
co-workers, starting in 1996. The
jump from 1) to 2) was caused by
a software jump in effective speed,
while the the jump from 2) to 3) was
caused by the hardware jump from
general-purpose computers to the
GRAPE family of computers. Note
finally that the data points are a
bit heterogeneous: in groups 1) and
3), equal-mass particles were used,

10

whereas in group 2), mostly unequal
mass particles were used, and in the
case of the simulations by Heggie &
Aarseth, some primordial binaries
were included.

Computers available for astronomers
around 1960 had speeds measured
in kflops, whereas the result labeled
Makino in Fig. 2 was obtained with
the first computer running at 1 Ter-
aflops, implying an increase in speed
of a factor 109. The GRAPE-DR is
expected to run at a speed of at least
1 Petaflops. The next-generation
GRAPE, after the GRAPE-DR, will
probably run at a speed of a few tens
of Petaflops, at some date around
2012 or so. The GRAPE generation
after that may reach a speed of 1
Exaflops, at some time after 2015.

We have estimated in the figure that
a speed of 1 Exaflops will enable us
to follow a million-body system of
equal-mass particles up to and be-
yond core collapse. Thus the transi-
tion from a 16-body to a million-body
system, with an increase in particle
number of almost 105, will have taken
a time span of sixty years and a speed
increase of a factor 1015.

In round numbers, the computing
time to core collapse tsim as a func-
tion of N and computer power P can
be expressed as:

tsim(N, P) =

0.1
(

N

103

)3
(

1Gflops

P

)

days =

100
(

N

106

)3
(

1Pflops

P

)

days

While N-body simulations are very
compute intensive, the memory re-
quirements msim are much less so.
A single snapshot for the masses,
positions and velocities for a million-
body system can be stored in less
than 100 Mbyte, which implies that
we can store 104 such snapshots in a
single Tbyte, which will be consid-
ered a small amount of storage by
the time we will be able to follow a
million-body system to core collapse.

It is even possible to store the com-
plete history of the types of runs that
are currently performed routinely.
There are about 100N2 particle steps
needed to reach core collapse in an N-
body system, which implies a storage
requirement of the order of 104N2

bytes or

msim(N) =
(

N

104

)2

Tbyte

This estimate can easily be reduced
by an order of magnitude or more,
if we store only a small fraction of
the individual particle steps, perhaps
in single precision, and use interpola-
tion to estimate the intermediate po-
sitions and velocities. However, in the
presence of primordial binaries, the
above number may increase by one
or two orders of magnitude, depend-
ing on how we store the information
for the perturbed binary motion. The
bottom line is that the estimate given
here is a good estimate for the max-
imum amount of storage needed for
stellar dynamics simulations of dense
stellar systems.

11

8 Stellar Evolution

Published results of stellar evolution
calculations often take the form of
tracks in the Hertzsprung-Russel di-
agram, with additional physical data
presented in tabular form. Such data
are very useful for population syn-
thesis studies. The simplest models
are constructed from a weighted sum
of individual stellar evolution tracks,
while more detailed models incor-
porate some additional information
about binary stellar evolution.

For dense stellar systems, however, a
typical star has a significant chance
to interact and possibly collide with
another star during its lifetime. In
such an environment stars of dif-
ferent ages can exchange mass, dis-
rupt each other or merge, and their
merger products can get involved
in similar interactions; binary stars
can encounter single stars as well as
other binaries, where one or more of
the stars may already be a merger
product; and so on. There is no way
that one can anticipate and tabulate
all possible multiple-star interactions
in dense stellar systems. Detailed at-
tempts at population synthesis for
such systems by necessity have to be
dynamical, taking into account the
particular ways that stars encounter
one another in a given simulation.

During the last decade, several dy-
namical population synthesis studies
have appeared (cf. Portegies Zwart
et al. 2001, Hurley et al. 2001). In
these studies, the dynamics of a dense
stellar system is modeled through di-
rect N -body integration, while the

stellar evolution is modeled through
fitting formulae that have been ob-
tained from large numbers of individ-
ual stellar evolution tracks. Binary
stellar evolution is modeled through
the use of semi-analytic and heuristic
recipes (Hurley et al. 2002).

The studies mentioned above have
all used input data obtained with the
stellar evolution code by Eggleton
(1973). As an introduction to this
code, a limited but more structured
version has been made available as
the EZ code, by Paxton (2004). For
an introduction to binary stellar
evolution, see Eggleton (2006). For
more background about approaches
to model stellar evolution in the con-
text of dense stellar systems, see Hut
et al. (2002) and Sills et al. (2003).

9 Stellar Hydrodynamics

Stellar dynamics is perfectly ade-
quate in modeling the motions of
stars as point masses moving un-
der the influence of gravity, even
in dense stellar systems, unless in-
dividual stars approach each other
to within a few stellar radii. When
that happens, the internal structure
of the stars has to be taken into ac-
count, and we have to switch to a
hydrodynamics module to follow the
encounter, which may lead to mass
transfer and even to the merging of
two or more stars. After the dust
has settled, we then have to update
the stellar evolution models for the
stars involved, and in case of mergers
we will have to construct new mod-
els from scratch, often with highly

12

unusual chemical compositions.

Pioneering investigations of these
complex processes have been made
by Sills et al. (1997, 2001), where
individual collisions and their after-
math were followed in detail. The
main stages in this process have re-
cently been automated for the first
time, as was reported during the
MODEST-6a workshop in Lund 1 ,
Sweden, in December 2005: Ross
Church automatized the collisions,
and Evert Glebbeek automatized
the construction of merger models
that can be fed to a stellar evolution
program, using the Make Me a Star
routine by Lombardi et al. (2002).

10 The GRAPE Family of

Special-Purpose Hardware

Simulations of dense stellar systems
involving tens of thousands of parti-
cles would not yet be possible, were
it not for the presence of GRAPE
special purpose hardware. Developed
at Tokyo University, starting in 1989
(Sugimoto et al. 1990), the GRAPEs
made it possible to simulate core col-
lapse for 32,000 particles already in
mid nineties (Makino 1996), and cur-
rently simulations using more than
100,000 particles pas core collapse are
routine (cf. Baumgardt et al. 2003).

While the earlier GRAPE chips
were hardwired to compute gravi-
tational particle-particle forces, the
new GRAPE-DR chip, currently un-

1 http://www.astro.lu.se/˜ melvyn/
modest6a.html

der development, is moving more
in the direction of general-purpose
hardware. It has a SIMD (single-
instruction-multiple-data) architec-
ture, which allows good performance
for a large class of scientific applica-
tions (Makino 2006).

11 Visualization

In a normal laboratory, it is often dif-
ficult or even impossible to measure
some of the physical parameters of
interest. Some areas of interest may
not be large enough to house a de-
tector, and for some quantities there
simply may not exist a detector that
is sensitive enough to measure them.
Some detectors may be too expen-
sive, and so on. In contrast, in the vir-
tual laboratory in which simulations
take place, in principle any value of
any physical variable can be deter-
mined at any place and time.

This incredible luxury comes at the
price, however, namely the price of
writing the proper software to probe
the simulations. Yes, in principle any-
thing can be determined, but in prac-
tice we face the challenge of writing
software tools that are general and
flexible enough to give the user the
desirable powers of investigation.

In practice, this price has turned out
to be uncomfortably high. Both in
stellar dynamics and in stellar evo-
lution, after decades of refinement of
the basic codes, there still is a surpris-
ing lack of visualization tools needed
to probe in detail the way that the
basic codes operate.

13

Sure, we have packages that display
the motions of the stars in stellar dy-
namics, and allow the user to zoom
in and out at arbitrary places in
space and time. But wouldn’t it be
nice to have intelligent tools that au-
tomatically find the most interesting
needles in the hay stack, in the form
of, say, close three-body encounters
or whatever it is that one may be in-
terested? With such tools, one could
take the whole recorded space-time
history of a long run, in order to
distill from all that information a
few short movies in particular loca-
tions of interest. Currently, no such
tools exist. Clearly, the development
of these kind of tools would form a
great contribution to the field of the
dynamics of dense stellar systems.

Of course, a general visualization
system will not be able to recognize
such interesting needles, since it has
no domain-specific knowledge. What
is needed is a visualization frame-
work, as an environment that allows
the user to create modules that con-
tain the specific knowledge needed
to find what is really interesting for a
particular application. If the visual-
ization framework provides the sup-
porting infrastructure, the user will
be able to write relatively short pro-
grams indicating what events are of
particular interest. This is similar to
the way any programming language
is used: the main complexity lies in
the compiler, which is provided by
an outside source, allowing the user
to write far simpler programs for
particular applications (cf. Bischof
et al. 2006).

Similarly, we have ways to plot the

trajectory of stars in a Hertzsprung-
Russel diagram, or in a few other dia-
grams that plot one physical parame-
ter against another. But by and large,
for most legacy codes there is a lack
of flexible visualization software that
would allow one to easily zoom into
what is really going on in particular
shells of interest at particular stages
in the evolution of a star. Here, too,
the biggest challenge is not so much
to allow access to any aspect of the
data, but rather to perform a type of
automatic data mining, in which an
intelligent tool will provide the user
with just the type of data he or she
might be interested in.

Recently, a group of astrophysicists
and computer scientists have started
to explore how we might develop the
kinds of tools needed, in a series of
meetings hosted by Steve McMillan
at Drexel University, in Philadelphia,
PA. Some of the main contributions
have been made by Levy (2003), from
the National Center for Supercom-
puting Applications at the Univer-
sity of Illinois at Urbana-Champaign,
IL, and by Bischof (2005), from the
Rochester Institute of Technology, in
Rochester, NY.

12 A Virtual Observatory for

Simulations

During the last decade, great strides
have been made toward the construc-
tion of a virtual observatory. The ba-
sic idea is to allow the user easy ac-
cess to a variety of archives for dif-
ferent telescopes, Earth-based as well
as space-based, operating in different

14

wave length bands, all the way from
radio to gamma rays. Without the
need to learn individual query lan-
guages for each data base, transpar-
ent access becomes much easier, and
also can be automatized successfully.
For a short recent review, cf. Djor-
govski (2005).

It would be a very natural exten-
sion to include archives of simula-
tions within the scope of a virtual
observatory. An example of a large-
scale simulation in cosmology, that
has been made freely available and
is now heavily used by many other
researchers, is the Millennium run
(Springel et al. 2005).

13 The Need for A Framework

So far, we have discussed the chal-
lenges involved in setting up the main
pieces of an environment in which to
run, analyze and archive the results
of simulations of dense stellar sys-
tems. But even if we have codes to
model the stellar dynamics, stellar
evolution, and hydrodynamics, if we
have access to a GRAPE system, if
we have proper visualization tools
and proper tools to build and inter-
rogate archives, we are not done yet.

On the contrary, in some sense the
main work is just beginning at this
point. There is the wholly separate
challenge of making all these six
pieces talk together and work to-
gether. We need to develop standard
definitions of interfaces between the
various software tools, as local ways
to connect individual tools, and we

need a framework in which we can
make all these tools operate together
in a useful way.

Ideally, we would be able to mix and
match bits and pieces from differ-
ent software packages, in a type of
umbrella environment. If this overall
framework is designed well enough,
we can use it to test and compare
various modules from different codes
in different settings.

So far, very little effort has been put
into the conception, let alone the
development, of such a framework.
Although many of us have written
tools that we could share with oth-
ers, in practice we often wind up
rewriting what others have done,
because of a lack of ease in mixing
and matching different tools. Most
software tools have little or no doc-
umentation, and often each tool has
its own input/output format and
idiosyncratic way of addressing its
options through command line ar-
guments or configuration files. A
central question is: how to overcome
these obstacles without insisting on
straitjackets; in other words: how to
leave everyone free to write in their
own way and style, and yet allow an
easy sharing of software modules.

A key ingredient of a overarching
framework is that we will not insist
on any particular form or format or
language or whatever other aspect of
the innards of each tool. The idea is
that all that will be hidden in a black
box, with only the wrapper interface
visible to the typical user.

The main challenge will be to define

15

an extensible software architecture
for a fully equipped computational
lab. An important step toward that
goal is to try to define interfaces
and data formats for communication
between modules, while starting off
with a series of toy models, almost
trivial black box examples that do
little or nothing but have at least the
right interface to be hooked up with
other such modules. From there on,
we can gradually add more and more
astrophysics to the toy models, to
let them ”grow up” to become real
astrophysics tools.

Ross Church has kindly set up a
special email list to discuss this tool
building process. You can subscribe
by going to the MODEST web site 2

and click on ”mailing list”. You will
then find, in the last sentence, a
”here” to click on to bring you to
Ross’s stellar-discuss page.

14 The Need for a Flexible

Top-Level Language

Traditionally, legacy codes in (as-
tro)physics have been monolithic,
written as one single huge program,
typically in Fortran. The only mod-
ularity in such an approach is a
division in subroutines. In many
cases, data is passed from one sub-
routine to another through the use
of common blocks, minimally struc-
tured chunks of data that introduce
the danger of connecting everything
with everything. By thus making far
more data visible than is necessary

2 http://www.manybody.org/modest.html

for individual parts of the whole
program, debugging can easily be-
come a nightmare. Also, it becomes
more complicated to extend such an
existing program without breaking
something unrelated somewhere else
in the process.

The bottom line is: monolithic pro-
grams don’t scale gracefully. The
only reasonable approach toward the
construction of a framework for sim-
ulating dense stellar systems, as a
virtual laboratory, is to allow a much
more heterogeneous environment. In
such an environment, a large col-
lection of diverse tools can be used
as black boxes, as mentioned above.
In particular, there is no need to
insist on using the same computer
language for different tools.

At the same time, it is important to
have a homogeneous and coherent
high-level framework layout with a
single suitable language. Of course,
different groups can set up different
laboratories, and as long as these
are designed in a modular way, the
various groups can exchange tools.
Each group can choose its own top-
level language, but it is essential
that there is a clear control structure
within one laboratory. And the eas-
iest way to enforce a homogeneous
control structure is to pick a partic-
ular language.

Good candidates for top-level lan-
guages are scripting languages, such
as Perl, Python, or Ruby, as well as
languages in the Lisp family, such as
Scheme, or a language like Haskell.
What all these languages have in
common is that they are further re-

16

moved from the hardware model of
computer CPU than more conven-
tional languages. In the hierarchy
of machine language, assembly lan-
guage, and more conventional lan-
guages such as Fortran, C, C++,
C# or Java, these higher-level inter-
preted languages form yet another
stage.

It is much easier to write complex
programs in, say, Python than it is
to write the same program in, say, C.
The analogies are that it is much eas-
ier to write a given program in C than
it is to write that program in assem-
bly language; and that it is in turn
easier to do that than to hand code
that program in machine language.

The other side of the coin is that a
fine-tuned program in assembly lan-
guage may be somewhat faster than
the same program written in C; and
the C program will certainly be a lot
faster than the Ruby program. This
means that we should only use the
highest-level language in those places
where speed is not the bottleneck.

When we are looking for a homo-
geneous top-level control structure,
speed is obviously not essential, since
almost all the work is done in the
most compute-intensive black boxes,
where the top-level language only
services as a conductor, orchestrat-
ing the whole dance.

So far, use of the newer higher-
level languages has only slowly en-
tered astrophysics. The main rea-
son for the reluctance to pick up
these new languages is no doubt
unfamiliarity. This in turn cre-

ates two interlocking obstacles:
1) in the middle of everyday re-
search/teaching/administration pres-
sures, one is not eager to set aside the
time to learn a new type of language,
unless its benefits are overwhelm-
ingly clear; and 2) without getting
familiar with a new type of language,
one is unlikely to ever get a real feel
for the sort of advantages that such
a new language may bring.

The central problem here is that a
lifelong adherence to one particular
language cannot but form a deep
single groove that determines how to
think about writing computer pro-
grams. And it then becomes almost
impossible to imagine any alterna-
tive. Without actual praxis in at
least one totally different language,
discussions about the pros and cons
of switching languages become un-
productive at best, frustrating at
second best, and often worse.

Let me try to illustrate this with an
analogy. If someone has been using
Roman numerals for doing arith-
metic for many years, (s)he is prob-
ably reluctant to switch to a use
of Arabic numerals overnight. Why,
they seem so cumbersome! There
are more different symbols, some of
them look rather similar and you
can just imagine how easy it would
be to make mistakes with them. Be-
sides, you have to learn new tables
of multiplication, tables that seem
more complex than the comfortable
rules that you already know, like
V*V = XXV or IV*IX = IIII*VIIII
= (I*VIIII) + (I*VIIII) + (I*VIIII)
+ (I*VIIII) = VVVV IIII IIII IIII
IIII = XX VIII VIII = XX VV VI =

17

XXXVI.

Sure, zealous propagandists of those
newfangled Arabic numerals tell you
that you can use them to do mirac-
ulous things, like multiplying MM-
MDCCCXLIV and MMCMLXXVIII
much faster than before, but can you
really take their word for it? Besides,
who would ever have a need to add,
let alone to multiply, such huge num-
bers??

15 An Example: The Maya

Open Lab

An example of a framework for mod-
eling dense stellar systems is the
Maya open lab (Hut & Makino,
2003). While it is still in the early
days of being constructed, it already
contains well over a thousand pages
of documentation, and a large num-
ber of computer codes. An example
of some of the novel contributions to
the Maya lab are N-body codes that
have not only individual time steps,
but in addition allow for individual
integration schemes. While the path
of one particle can be integrated
with, say, a leapfrog scheme, another
particle can use a Hermite scheme,
yet another particle a fourth-order
Runge-Kutta scheme, or a tradi-
tional Aarseth multi-step scheme,
and so on.

The Maya lab is currently the main
project in our Art of Computational
Science initiative. And since ACS is
based on our notion of ‘Open Knowl-
edge’, an extension of the idea of
‘Open Source’ as described in sec-

tion 5, we call the Maya framework
an ‘Open Lab’ because there, too,
the history of and motivation for the
construction of the framework is doc-
umented in a very unusual degree of
detail.

At the core of the Maya lab, the
orchestration of the orbit integra-
tion of the stars and the handshak-
ing between stellar dynamics, stel-
lar evolution, and stellar dynamics
will be taken care of by the Kali
code, currently under construction.
This code is written completely in
Ruby, at least during the prototyp-
ing phase, and we will replace the
most compute-intensive parts, where
needed, by equivalent modules in C.

We borrowed this name from the
Sanskrit kali, meaning dark, as in the
kali yuga, the dark ages we are cur-
rently in according to Hindu mythol-
ogy. The same word also occurs in
the name Kali, for the Hindu God-
dess who is depicted as black. The
term dark seemed appropriate for
our project of focusing on forms of
tacit knowledge that have not been
brought to light, so far, and perhaps
cannot be presented in a bright, log-
ical series of statements. Instead,
we expect our dialogues to carry
the many less formal and less bright
shades of meaning, that pervade any
craft.

As for the name Maya, this seemed
fitting for two reasons, one connected
with Middle America and one with
India. The Maya culture was very
good at accurate calculations in as-
tronomy. And the word maya in
Sanskrit has the following meaning,

18

according to the Encyclopedia Bri-
tannica: “Maya originally denoted
the power of wizardry with which a
god can make human beings believe
in what turns out to be an illusion.”
Indeed, a simulation of the heavens
is something virtual, an illusion of
sorts, and a considerable feat of wiz-
ardry.

We hope that the Maya open lab
will prove to be an adequate and
user friendly framework that can be
easily extended for any type of mod-
eling of dense stellar systems. Even
so, we also hope that others will con-
struct different frameworks, as part
of a friendly competition in which we
can learn from each other and share
each others’ tools. Only by trying
different approaches will we find out
which approach is most effective for
which type of applications. And as
long as we can agree on interface is-
sues, it should be possible to combine
the use of more than one framework
whenever that is desired.

16 Validation and Verification

The main reason to carry out and
analyze detailed simulations of dense
stellar systems is to compare them
critically to observations. This pro-
cess of testing by comparison can be
broken down in two steps, related to
validation and verification, two tech-
nical terms in software development.
These engineering terms have the fol-
lowing official descriptions, as defined
by the American Institute of Aero-
nautics and Astronautics (AIAA):

• Validation: the process of de-
termining the degree to which a
model is an accurate representa-
tion of the real world from the
perspective of the intended uses of
the model. (AIAA G-077-1998)

• Verification: the process of deter-
mining that a model implementa-
tion accurately represents the de-
veloper’s conceptual description of
the model and the solution to the
model. (AIAA G-077-1998)

If a given model of, say, common
envelope evolution is implemented
incorrectly, verification should catch
that. Whether the results confirm to
what observations show, is a matter
of validation.

So the first step in testing should be
verification, to check that your pro-
gram works as intended. Only when
we are comfortable that that is ac-
tually the case, can we do our main
task of validation, of comparing sim-
ulations with observations.

Another way of saying this, is:

• verification compares theory and
simulations

• validation compares simulations
and observations

Both are important, and very dif-
ferent. This is a reflection of the
fact that science, which used to
be a question of comparing theory
and experiment/observations, now
has three, rather than two compo-
nents: theory, simulations, experi-
ment/observations.

19

In fact, there is yet another impor-
tant intermediate step, one in which
we compare different simulations,
based on different approximations,
in order to see how closely their pre-
dictions agree with each other. This
step was discussed at some length at
the IAU Symposium 208 in Tokyo
in 2001, resulting in the specifica-
tion of a well defined set of initial
cluster and stellar parameters (Heg-
gie 2003). Given the fact that the
necessary codes are rather complex,
requiring years of development, so
far few groups have been able to con-
front this new challenge. This stands
in contrast to the first collabora-
tive experiment (Heggie et al. 1998),
which was confined to stellar dynam-
ics (without stellar evolution), and
attracted ”entries” from about 10
groups.

17 Team Work

At first, modeling dense stellar sys-
tems will require the use of so-called
legacy codes. However, due to the
lack of modularity of these codes, at
some point we will have to rewrite
those codes. Given that the leading
codes in use in stellar evolution and
stellar dynamics have a history of
decades, how realistic will it be to
attempt to rewrite them?

Of course, in principle a rewrite
should take significantly less time
than the time spent originally to
write a legacy code, given that we
should have learned from the process
of writing the code in the first place.
In practice, however, this time saving

argument is far from clear. For one
thing, in most cases very little of the
original code writing has ever been
documented, and as a result, much of
the trial and error process may have
to be repeated. For another, to make
a much more robust and general code
introduces extra requirements, above
and beyond the task of getting some-
thing that sort-of works, most but
not all of the time, the typical goals
that have been in operation so far.

Let us estimate how long it would
take an expert to produce a complete
rewrite of a legacy code, in a modu-
lar and robust and well-documented
way. To get something working, even
while starting from scratch, will take
only a few years. But to then get the
code to the point that it will include
the more fancy additions that have
accreted onto the legacy code will
take a few years more. Most likely, in
the process the original goal of full
modularity will have been compro-
mised, more than once, leading to
the need to backtrack a few times,
setting things up again more of less
from scratch. And then there is the
requirement of making everything
robust, so that the code will run un-
der (almost) all conceivable circum-
stances, without crashing or grinding
to a halt.

All this is likely to take at least
ten years, and probably significantly
longer. If you then add the need
to make the code run efficiently on
massively parallel computer clusters,
a few more years can be thrown in
easily. And, last but not least, our
expert is supposed to carry out some
scientific projects with the new code,

20

both to produce scientific results as
well as to see whether the code really
performs adequately in cutting-edge
research projects. Therefore, as a
round number, 20 person-years may
be a realistic estimate, and if any-
thing perhaps an underestimate.

Now this is based on a direct scal-
ing up of the work that needs to be
done by a single expert. The question
arises: how to develop this kind of
software with a team, say in a 5-year
time span? A lower limit for the size
of the team would be four people, in
order to provide the 20 person-years
needed, but that will be a vast un-
derestimate. In practice, we will need
≫ 20/5 = 4 people, since we will
suffer from at least three inefficiency
factors, each of which are >

∼ 2:

• each piece of code needs extensive
documentation

• each code writer has to talk exten-
sively with other code writers

• each code writer is not as brilliant
as the single expert

If we take all this on face value, we
will need at least (20/4)23 = 40 per-
sons to produce a complete replace-
ment of a legacy code in five years.
If we want to do this for stellar dy-
namics, for stellar evolution, and for
stellar hydrodynamics, we have to
triple this estimate. In addition, we
still have to provide similarly robust
and modular code for visualization,
archiving and the task of integrating
it all in an overarching framework. If
we make the rather optimistic esti-
mate that the latter three together
require only as much work as the re-
placement of a legacy code, we wind

up with the requirement of having
160 people working together to pro-
duce a full-fledged, state-of-the-art,
modular, robust, and splendidly doc-
umented body of software that can
simulate, in an integrated way, all the
physical processes relevant for dense
stellar systems, to the extent that we
understand the underlying physics.

18 Centers forModeling Dense

Stellar Systems

The analysis above has driven us to
a rather large enterprise. It is hard
to say what will be harder: to find
160 individuals suited to the task, or
to find the money to pay them for
5 years; with overhead for manage-
ment and a building, we’re looking at
a project of order of a hundred mil-
lion dollars, or twenty million dollars
per year for five years.

Faced with such a demand, one may
wonder whether my estimate was
not wildly overblown. Could the job
not be done with far fewer people?
I hope that is the case, and I’d love
to hear any good argument in that
direction. However, such an argu-
ment should address specifically the
detailed points I have listed above,
and, frankly, I doubt that such an
argument can be constructed. If any-
thing, I am afraid that I may have
been too optimistic in my estimates.

The problem is that, so far, simu-
lation packages have been written
largely by a single person, or a small
group of people, in the 100

− 101

range. This is the sole reason that

21

a request to employ of order 102

people may come as somewhat of a
surprise. But as soon as we reflect on
the infrastructure of (astro)physical
research in general, we see that some
of the largest projects employ more
than 103 people, and that projects
with 102 are in fact quite common.

One example in astrophysics of a sim-
ulation center that falls in the 102

people category is the ASC/Alliances
Center for Astrophysical Thermonu-
clear Flashes 3 , based at the Univer-
sity of Chicago, with widely spread
collaborations with many other uni-
versities and research centers. This
center is developing, maintaining and
freely distributing the FLASH code
for modeling thermonuclear flashes,
which is now used by many astro-
physicists.

What are the prospects that the
study of dense stellar systems could
lead to a similar-sized initiative? The
range of topics, from active galac-
tic nuclei to star forming regions,
including the study of globular and
open clusters and planet formation,
certainly touches upon a large frac-
tion of astrophysics research, directly
or indirectly. What would be a re-
alistic way to get such an initiative
underway?

Realistically, we will have to start
with a group size somewhat smaller
than 102. As a round number, imag-
ine that we could get 50 people to
collaborate, half an order of magni-
tude than the number of 160 listed
above. Such a team would not be able

3 http://flash.uchicago.edu

to build a dream laboratory for dense
stellar systems in five years, but they
still should be able to make a rea-
sonable start in that direction. Also,
the time span of five years may be
too optimistic anyway: if we stretch
it out to ten years or longer, a team
of 50 people may well be adequate.

There is no need to have these 50
people working together in one cen-
ter. The whole idea of code modu-
larity should guarantee that large
chunks of code can be written inde-
pendently of other large chunks of
code. In principle, a well thought-
out, well-balanced and high degree
of modularity could allow 50 people
to write code in 50 different loca-
tions. However, such a fine-grained
approach strikes me as unrealistic.
My guess is that productivity will be
far higher if people can work in clus-
ters, with day-to-day communication
in a face-to-face way.

One scenario would be to establish
5 centers for producing the tools for
modeling dense stellar systems, with
10 persons actively involved in tool
building at each of these sites, to get
a critical mass of 50 people in total.
Given the current distribution of in-
dividuals working in modeling dense
stellar systems, there could be one
center in Japan, two in the U.S., and
two in Europe. Each center would
need funding on the level of at least
a million dollars per year, depending
on overhead and costs for housing,
management, secretarial help, and
the amount of hardware required.
The minimum total yearly cost of
around five million dollars is indeed
equal to the funding level of the

22

FLASH center, mentioned above, so
this may be a reasonable estimate,
especially since the cost will be dis-
tributed over several countries.

It will neither be realistic nor desir-
able to carve up the work that needs
to be done over these five centers in
an exclusive way. Each center will
want to keep a working set of tools
for all aspects of the simulations, to-
gether with a minimal amount of ex-
pertise concerning those tools. And
a certain amount of competition be-
tween the centers will actually be
beneficial, leading to an increased
degree of robustness: those tools that
are found to perform best will either
be taken over by other centers, or at
least their most relevant design prin-
ciples can be incorporated in the fur-
ther development of tools elsewhere.

For all this to work, an atmosphere
of openness and sharing of code will
be essential, together with regular
communication between the centers.
Fortunately, the MODEST commu-
nity 4 already has an excellent track
record of stimulating ongoing dia-
logues between more than a hundred
researchers in the field of dense stellar
systems, through multiple meetings
each year for the last several years.
So far, most of the discussions have
revolved around plans for the future,
but once the five or so centers are in
full swing, the same communication
channels can be used to orchestrate
the interactions between the centers.

4 http://www.manybody.org/modest.html

19 Outlook

Detailed simulations of dense stellar
systems, while currently still on the
drawing boards, will become possi-
ble over the next five years, and can
be expected to become routine in an-
other five years. And the timing is
right: simulations in many other ar-
eas of astrophysics are expanding to
the point of beginning to overlap with
the study of dense stellar systems.

For example, cosmological simula-
tions are becoming so accurate that
the limiting factor is no longer just
the sheer hardware speed or equiv-
alently the number of particles that
can be used in a simulation. Rather,
new bottlenecks are rapidly appear-
ing in the form of the details of star
formation and the behavior of ac-
tive galactic nuclei, two examples of
dense stellar systems.

Similarly, simulations in galactic dy-
namics, such as the study of the
collision and subsequent interaction
of two galaxies, show that dense
young star clusters are created in the
bridges and tails that are formed dur-
ing the galactic encounters. With-
out modeling the internal processes
that take place in these young dense
clusters, the accuracy of the galactic
encounter simulations is inherently
limited.

Yet another area of simulations is the
formation of planetary systems, a
relevant task given the recent wealth
of observations of extrasolar plan-
ets. Stars are formed in star forming
regions, and the formation of proto-

23

planetary disks is an intrinsic part
of the whole star forming process.
Therefore, the only way to accurately
model the formation of planetary
systems is by taking into account, at
least to some degree of realism, the
formation of the whole embedding
star forming region, another example
of a dense stellar system.

At the heart of the study of dense
stellar systems is the study of stel-
lar evolution, an area that had its
heydays in the nineteen sixties, and
became relatively less fashionable
in the seventies and eighties, with
a shift to galactic and extragalac-
tic astrophysics, and in the nineties
and the current zeroes, with a shift
to precision cosmology. However, for
the reasons summarized above, I pre-
dict that stellar evolution, through
its central role in the study of dense
stellar systems, will once again take
center stage in astrophysics, start-
ing in the next decade, a role that is
likely to last for decades.

My conclusion is that young re-
searchers are well advised to learn
a fair amount of stellar evolution,
and especially binary star evolution,
where so much is still unexplored.
And making these fields even the fo-
cus of their research is likely to pay
off, in almost any application they
will later venture into.

Acknowledgments

I thank Jun Makino for many fun dis-
cussions about the themes treated in
this paper, and for his comments on

this paper. I also thank Hans-Peter
Bischof, Coleman Miller, Bill Pax-
ton, Gerald Sussman, John Tromp
and Enrico Vesperini for their com-
ments.

References

Aarseth, S.J. 2003, Gravitational
N-Body Simulations [Cambridge
Univ. Pr.]

Barnes, J. & Hut, P. 1986, Nature,
324, 446

Baumgardt, H., Hut, P., Makino, J.,
McMillan, S. & Portegies Zwart S.
2003, ApJL, 582, L21.

Bischof, H.-P. 2005, preprint, avail-
able at http://www.cs.rit.edu/
˜ hpb/Publications/csc 05.pdf

Bischof, H.-P., Hut, P. & Makino, J.
2006, in preparation

Djorgovski, S.G. 2005, in IEEE Proc.
of CAMP05, ”Computer Archi-
tectures for Machine Perception”,
eds. V. Di Gesu & D. Tegolo.
Available as a preprint at http://
arXiv.org/abs/astro-ph/0504651

Eggleton, P.P. 1973, MNRAS, 163,
279

Eggleton, P.P. 2006, Evolutionary
Processes in Binary and Multiple
Stars [Cambridge Univ. Pr.]

Heggie, D.C. 2003, in Astrophysi-
cal Supercomputing Using Particle
Simulations, IAU Symposium 208,
eds. P. Hut and J. Makino (San
Francisco: the Astronomical Soci-
ety of the Pacific).

Heggie D.C., Giersz M., Spurzem R.,
Takahashi K. 1998, in Highlights of
Astronomy Vol. 11A, ed. J. Ander-
sen [Kluwer Academic Publishers],
p.591.

24

http://www.cs.rit.edu/

Heggie D.C., Hut, P., 2003, The
Gravitational Million Body Prob-
lem [Cambridge Univ. Pr.]

Hurley J.R., Pols O.R., Tout C.A. &
Aarseth S.J. 2001, MNRAS, 323,
630

Hurley J.R., Tout C.A. & Pols O.R.,
2002, MNRAS, 329, 897

Hut, P. 2003, in Astrophysical Su-
percomputing Using Particle Sim-
ulations, IAU Symposium 208, eds.
P. Hut and J. Makino (San Fran-
cisco: the Astronomical Society of
the Pacific), p. 331.

Hut, P. & Makino, J. 2003,
“http://www.ArtCompSci.org”.

Hut, P., Shara, M., Aarseth, S. J.,
Klessen, R. S., Lombardi, J. C.,Jr.,
Makino, J., McMillan, S., Pols, O.,
Teuben, P. J., Webbink, R. F.,
2002, New Astronomy, 8, 337.

Levy, P. 2003, in Astrophysical Su-
percomputing Using Particle Sim-
ulations, IAU Symposium 208, eds.
P. Hut and J. Makino (San Fran-
cisco: the Astronomical Society of
the Pacific), p. 343.

Lombardi, J. C., Warren, J. S., Ra-
sio, F. A., Sills, A., Warren, A. R.,
2002, ApJ, 568, 939.

Makino, J. 1996, ApJ, 471, 796
Makino, J. 2006, preprint, http://

arXiv.org/abs/astro-ph/0509278
Makino, J., Fukushige, T., Koga, M.,

& Namura, K. 2003, PASJ, 55,
1163

Paxton, B. 2004, preprint, http://
arXiv.org/abs/astro-ph/0405130

Portegies Zwart, S.F., McMillan,
S.L.W., Hut, P. & Makino, J. 2001,
MNRAS, 321, 199.

Sills, A., Lombardi, J. C., Bailyn,
C. D., Demarque, P., Rasio, F. A.,
& Shapiro, S. L. 1997, ApJ, 487,
290

Sills, A., Faber, J. A., Lombardi,
J. C., Rasio, F. A., & Warren, A. R.
2001, ApJ, 548, 323

Sills, A., Deiters, S., Eggleton, P.,
Freitag, M., Giersz, M., Heggie, D.,
Hurley, J., Hut, P., Ivanova, N.,
Klessen, R.S., Kroupa, P., Lom-
bardi, J.C., McMillan, S., Porte-
gies Zwart, S. & Zinnecker, H.,
2003, New Astronomy, 8, 605.

Springel, V., White, S.D.M., Jenkins,
A., Frenk, C.S., Yoshida, N., Gao,
L., Navarro, J., Thacker, R., Cro-
ton, D., Helly, J., Peacock, J.A.,
Cole, S., Thomas, P., Couchman,
H., Evrard, A., Colberg, J., Pearce,
F. 2005, Nature 435, 629.

Sugimoto, D., Chikada, Y.,
Makino, J., Ito, T., Ebisuzaki, T.,
& Umemura, M. 1990, Nature,
345, 33.

25

http://www.ArtCompSci.org

	Gravitational Laboratories
	Complexity
	Simulations as the Third Pillar of Science
	The Need for a Whole New Approach
	An Example: The Art of Computational Science
	Dense Stellar Systems
	Stellar Dynamics
	Stellar Evolution
	Stellar Hydrodynamics
	The GRAPE Family of Special-Purpose Hardware
	Visualization
	A Virtual Observatory for Simulations
	The Need for A Framework
	The Need for a Flexible Top-Level Language
	An Example: The Maya Open Lab
	Validation and Verification
	Team Work
	Centers for Modeling Dense Stellar Systems
	Outlook

