7/28/2019 _Partl_programming_simple2dMovies_lesson06

Day 6 - Simple 2D Movies

Let's start with things we have already started working on - making some simple movies. A few of us got to that
last week.

First, let's read in a model we have saved:

In [1]: import numpy as np
import matplotlib.pyplot as plt
¢matplotlib inline

Let's also read in our data that we saved like last week. Again, make sure the hermite library.py fileis
located in the same directory were you are running this all from.

In [2]: from hermite_library import read hermite solution from file

Now we have to remember where our data is stored. Probably the easiest thing to do is copy your
MyPlanetSystem.txt or similar file to this directory and go from there.

NOTE: you're system will have a different name! Make sure you find your specific .txt file

In [3]: t h, Eh, r h, v h = read hermite solution from file('myPlanetSystem kep
lerl101l_solutionl.txt')

Let's make a quick plot to remind ourselves what this system looks like:

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Partl_programming_simple2dMovies_lesson06.ipynb?download=false 1/9

7/28/2019 _Partl_programming_simple2dMovies_lesson06

In [4]: | # first create an axis object to hold our 2 horizontal plots
fig, ax = plt.subplots(l, 2, figsize=(10%*2, 10))
figsize makes sure we are 2x times wider than higher

loop over the number of particles in our system
for i in range(r_h.shape[0]):
on the Oth i.e. first set of axis plot
the ith planet
the Oth (x) axis vs the Ist (y) axis
and plot all the time steps (:)
ax[0].plot(r_h[i,0,:], r h[i, 1, :])

energy plot on the 2nd set of axis
ax[1l].plot(t_h, E h)

plt.show()

-0.00006788

0.06

~0.00006790

0.02 -0.00006792

0.00

—-0.00006794

-0.00006796

-0.00006798

-0.06 -0.04 -0.02 0.00 0.02 004 0.06 00 02 04 06 08 10
1e7

Now recall we also made some 3D plots of this data, let's remind ourselves what that looked like:

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Part]l _programming_simple2dMovies_lesson06.ipynb?download=false 2/9

7/28/2019 _Partl_programming_simple2dMovies_lesson06

In [5]: | # we can test-replot like we did before:
fig, ax = plt.subplots(l, 4, figsize = (10*2, 10))
fig.suptitle('Coordinates Plot')

set the labels along the horizontal (x)
and vertical axis

COMMENT ALL THESE

ax[0].set xlabel('x in AU')

ax[0].set ylabel('y in AU')

ax[l].set xlabel('x in AU')
ax[l].set ylabel('z in AU')

ax[2].set xlabel('y in AU')
ax[2].set ylabel('z in AU')

plot Euler's solution, particle 1, x-y
for i in range(r_h.shape[0]):
ax[0].plot(r_h[i,0,:], r h[i,1,:], 1lw=3)

for i in range(r_h.shape[0]):
ax[l].plot(r_h[i,0,:], r_h[i,2,:], lw=3)

for i in range(r_h.shape[0]):

ax[2].plot(r_h[i,1,:], r h[i,2,:], 1lw=3)

ax[3].set xlabel('Time in years')
ax[3].set _ylabel('Energy')

re-norm energy

ax[3].plot(t _h, E h)

plt.show()

Coordinates Plot

-0.00006788

0.06

—0.00006790
004

0.02 0.02
0.02 —0.00006792

2 o
T 000 000 000 g
> & -0.09006794
-0.02
0.0z -0.02 -0.04006796
-0.04
_0.0a —0.04 ~0.00006798
-0.06
-0.06 -0.04 ~0.02 000 002 004 006 ~0.06 -0.04 -0.02 000 002 004 006 ~0.06 -0.04 -0.02 000 002 004 006 00 02 04 06 08 10
xin AU X in AU yin AU Time in years le7

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Part]l _programming_simple2dMovies_lesson06.ipynb?download=false 3/9

7/28/2019 _Partl_programming_simple2dMovies_lesson06

Note my system here is pretty 2D and not exciting, your's might be very different!

Animations

How would we make an animation of this? We will basically make "frames" of data - one for each timestep, or
subset of times (more on that in a moment) and then plot this.

There was optional code from last week that did a simple animation. Let's start with just a face-on or x-axis plot.

From above, we know this should look something like, or whatever equivalent you system looks like:

In [6]: | # first create an axis object to hold our 2 horizontal plots
fig, ax = plt.subplots(l, 2, figsize=(10%*2, 10))
figsize makes sure we are 2x times wider than higher

loop over the number of particles in our system
for i in range(r_h.shape[0]):
on the Oth i.e. first set of axis plot
the ith planet
the Oth (x) axis vs the Ist (y) axis
and plot all the time steps (:)
ax[0].plot(r h[i,0,:], r h[i, 1, :])

energy plot on the 2nd set of axis
ax[1].plot(t_h, E_h)

plt.show()

-0.00006788

006

—-0.00006790

002 ~0.00006792

—0.00006794

-0.02

—0.00006796

-0.00006798

-0.06 -0.04 -0.02 0.00 0.02 004 0.06 0.0 02 04 06 08 10
1e7

To do an animation, let's start by importing some things we need:

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Part1_programming_simple2dMovies_lesson06.ipynb?download=false

4/9

7/28/2019

In [7]:

_Partl_programming_simple2dMovies_lesson06

1f you get an error try:
!pip install JSAnimation

from JSAnimation.IPython_display import display animation
from matplotlib import animation

Requirement already satisfied: JSAnimation in /Users/jillnaimanl/anacon
da3/lib/python3.7/site-packages (0.1)

So, we should expect that if we make a movie of this developing, this should be the final frame of our movie.

One thing we need to be aware of is that the more time steps we want to show, i.e. the number of frames , the
longer it will take to generate this animation, and the longer it will take to save to a file. So we are going to
subsample our dataset for outputing purposes.

In [8]:

In [9]:

Out[9]:

plot how many steps? i.e. every X number of steps?
we probably don't want a huge movie with every step
stepSize = 50

r h[number of particles, number of coords, number of times]
subsample

we will subsample time with indexing like: start:stop:step
=r h[:,:,0:-1:stepSize]

= t h[0:-1l:stepSize]

= E h[0:-1:stepSize]

[B e i B NN

r.shape, r h.shape

((3, 3, 100), (3, 3, 5000))

What do we think the last frame of our animation should look like?

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Partl_programming_simple2dMovies_lesson06.ipynb?download=false

5/9

7/28/2019 _Partl_programming_simple2dMovies_lesson06

In [10]: # let's plot!
fig, ax = plt.subplots(l, 2, figsize = (10*2, 10))
fig.suptitle('Coordinates Plot')

ax[0].set xlabel('x in AU')
ax[0].set ylabel('y in AU')

recall:
r[NUMBER OF PARTICLES, NUMBER COORDINATES (X,Y,Z), NUMBER OF TIMESTEP
S]
for i in range(r.shape[0]):
ax[0].plot(r[i,0,:], r[i,1,:], 1lw=3)

ax[l].set xlabel('Time in years')
ax[l].set ylabel('Energy')

re-norm energy

ax[1l].plot(t, E)

plt.show()

Coordinates Plot

—-0.00006788

0.06

—0.00006790

—-0.00006792

yin AU
o
=
3

=
g
& —0.00006794

~0.00006796

-0.00006798

-0.06 -0.04 -0.02 0.00 0.02 004 0.06 00 02 04 06 08 10
xin AU Time in years 1le7

Now that we have what we want to plot, let's use a library to import and make animations:

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Part]l _programming_simple2dMovies_lesson06.ipynb?download=false 6/9

7/28/2019 _Partl_programming_simple2dMovies_lesson06

In [11]: | # initalize our figure
fig, ax = plt.subplots(l, 2, figsize = (10*2, 10))
empty fig shows up

10 10

08 08

06 06

04 04

02 02

00 0.0 T
00 02 04 06 08 10 00 02 04 06 08 10

In [12]: from animations_library import plot animations

In [13]: init, animate, nFrames = plot animations(fig, ax, t, E, r)

Notes: above modified following https://stackoverflow.com/questions/20624408/matplotlib-animating-multiple-
lines-and-text (https://stackoverflow.com/questions/20624408/matplotlib-animating-multiple-lines-and-text)

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Part]l _programming_simple2dMovies_lesson06.ipynb?download=false 79

7/28/2019
In [14]:
Out[1l4]:

call
hanged.
anim =

call

_Partl_programming_simple2dMovies_lesson06
the animator. blit=True means only re-draw the parts that have c

animation.FuncAnimation(fig, animate, init func=init,
frames=nFrames, interval=20, blit=True)

our new function to display the animation

display animation(anim)

yin AU

~0.00006790

-0.00006792

-0.00006794

o
Normalized Energy

~0.00006796

-0.00006798

-0.06 -0.04 -0.02 0.00 002 004 006 00 02 04 06 08
xin AU Time in seconds. 17

O

I RN RS N | I R R A
Once @ Loop Reflect

Ok, the above is pretty neat (looks cool with the short number of frames we have here). The reason it looks so
groovy is because we are only using one out of every 50 time steps. You can see that already we are mis-
leading our viewer, but we might want to start this way because higher resolution animations will take longer to

run.

Before using your own sims, you might want to know how do we save it as a movie we can post places? Turns
out that is relatively easy with a few lines of code:

Easiest:

In [21]:

anim.save('myAnimation.gif', writer='imagemagick')
NOTE: you will have to specifiy this image writer after installing ffm

peg

And then you can double click from your notebook folder and it will pop up in your browser. Another option is to
make an mp4:

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Partl_programming_simple2dMovies_lesson06.ipynb?download=false

8/9

7/28/2019 _Partl_programming_simple2dMovies_lesson06

In [] # note: if you get a "ffmpeg not found" error try:

I think its this one
you might have to restart kernel after this
#lconda install -c conda-forge ffmpeg --yes

probably not this one

#!pip install imageio-ffmpeg

In [17]: | # Set up formatting for the movie files
Writer = animation.writers['ffmpeg']
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)

In [18]: # save!
anim.save('anim.mp4', writer=writer)

Exercise
Repeat making movies using this method for your own system.
Optional: modifyin the plotting library code

Try different x/y/z combinations or make a 1x4 plot like we did with still images. Think about any symbols you
want to add - arrows? How would you add a dot to show where the planet is? (Hint: google "matplotlib marker
styles")

Hint: start with one change - how would you change the colors of the plots? If you wanted to figure out how to
plot different symbols, how would you do that?

Note: for this you will have to modify the library code and then re-import your the library by doing Kernel ->
Restart+Run all

You can also just copy-paste the code in your notebook and go from there.

In []

localhost:8888/nbconvert/html/csci-p-14110/lesson06/_Partl_programming_simple2dMovies_lesson06.ipynb?download=false

9/9

