Day 8, Part 1 - intro to ipyvolume

We'll start our journey into the 3RD DIMENSION with the package ipyvolume

In [7]: | # if you don't get it:
#!pip install ipyvolume
note: you may need:
#!jupyter nbextension enable --py --sys-prefix ipyvolume
#! jupyter nbextension enable --py --sys-prefix widgetsnbextension

or you can do:
#!conda install -c conda-forge ipyvolume

import ipyvolume

Let's do a quick look at something with some random 3D data:

In [8]: import numpy as np
X, Y, z = np.random.random((3, 10000))
ipyvolume.quickscatter(x, y, z, size=1, marker="sphere")

Easy peasy! Let's read in our simulation data and plot this!

In [11]: from hermite_library import read hermite solution from file

as a test:
t h, Eh, r h, v h = read hermite solution from file('myPlanetSystem kep
ler101l solutionl.txt')

In [12]: | # we'll have to reformat a bit for plotting

right now, just all as one color
x =r h[:,0,:].ravel()
y = r_h[:,1,:].ravel()
z =1r h[:,2,:].ravel()
ipyvolume.quickscatter(x, y, 2z,

size=1, marker="sphere")

this plots things as overlapping spheres
so the orbits look like tubes

Let's make things a little more complicated and allow us to take a look at each orbit:

In [13]: ipyvolume.figure()
colors = ['red', 'blue', 'green'] # color of each particle
for i in range(r_h.shape[0]): # loop over particles
ipyvolume.scatter(r_h[i,0,:],
r h{i,1,:],
r hi(i,2,:],
color=colors[i],
marker='sphere')
ipyvolume.show()
now all of the orbits are different colors

So, this is pretty cool - we can now see how the orbits "precess" during their evolution and we can check out
these shapes in 3D.

Note we can also plot more abstract spaces in 3D - like velocity space:

In [14]: v_h

Out[14]: array([[[1.20141674e-06, 4.46835279e-02, 8.93138660e-02, ...,
-6.74179312e-01, -6.37677344e-01, -6.00136945e-01]7],
[-8.52351194e-01, -8.51372577e-01, -8.48435580e-01, ...,
-5.87805976e-01, -6.19270706e-01, -6.48672316e-01],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,

0.00000000e+00, 0.00000000e+00, 0.00000000e+007]7],

[[-1.48139093e-01, -1.65663354e-01, -1.83090972e-01, ...,
-7.29450017e-01, -7.32358304e-01, -7.34843357e-01],
[7.27438358e-01, 7.23648208e-01, 7.19435966e-01, ...,
1.28134545e-01, 1.10548127e-01, 9.28952218e-02],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+0017,
[[1.20141674e-06, -4.45521515e-06, -1.01058840e-05, ...,
9.34101445e-05, 8.86965894e-05, 8.38448364e-05],
[1.04715912e-04, 1.04619652e-04, 1.04272661le-04, ...,
7.52448409e-05, 7.94709091e-05, 8.34297694e-05],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00111)

In [15]: ipyvolume.figure()
colors = ['red', 'blue', 'green'] # now velocity of each particle is dif
ferent color
for i in range(v_h.shape[0]): # loop over number of particles
ipyvolume.scatter(v_h[i,0,:],
v_h[i,1,:1],
v_h[i,2,:],
color=colors[i],
marker='sphere')
ipyvolume.show()

So this is a little less intiative, but this is how the velocities of our particles change during their orbits.

Ok, we can also show velocity by little vectors:

In [16]:

ipyvolume. figure()

colors = ['red', 'blue', 'green'] # each particle's velocity is differen
t color
for i in range(v_h.shape[0]): # loop over particles

ipyvolume.quiver(r_h[i,0,:], # plot x,y,z positions
r h{i,1,:],
r h{i,2,:],
v_h[i,0,:], # also include vx/vy/vz vectors of velo
cities
v_h[i,1,:],
v_h[i,2,:],
color=colors[i])
ipyvolume.show()

So clearly the above is pointless - while it looks cool the arrows are too big and there are too many of them! We
can change this by taking "X" number of points. This is like the subsampling we did before to keep our
framerates of our animations small:

In [17]:

step = 1000 # plot ever "step"th velocity vector
also, length of arrays in time-axis
N = v_h.shape[2]

ipyvolume. figure()
colors = ['red', 'blue', 'green'] # colors of each particle
for i in range(v_h.shape[0]): # loop every particle
ipyvolume.quiver(r_h[i,0,0:N:step], # plot subsampled x/y/z
r h{i,1,0:N:step],
r h{i,2,0:N:step],
v_h[i,0,0:N:step], # with subsampled vectors vx/vy/
vz
v_h[i,1,0:N:step],
v_h[i,2,0:N:step],
color=colors[i],
size=2) # also, if things look too crowded, we can
also make the arrows themselves smaller
ipyvolume.show()

Now we can see a bit more about the motion - that their directions are opposite of eachother for example. And
that the central mass only moves slightly and around its center as well.

Animation

Let's now figure out how to make an animation in 3D, and then save it for ourselves! To do this, we'll need to
format our data specifically as (time, position):

In [18]: | # for example, for particle 0:
r h{:,0,:].T.shape

out[18]: (5000, 3)

In [19]: step = 10 # only do every 10 steps
also, length of arrays in time
N = v_h.shape[2]

subsample to make more managable
r =r hf{:,:,0:N:step]
v v_h[:,:,0:N:step]

r h.shape, r.shape, r[:,2,:].T.shape

Out[19]: ((3, 3, 5000), (3, 3, 500), (500, 3))

In [20]: # have to format color as well
#colors = np.empty((0,3))
color = [(1,0,0), (0,0,1), (0,1,0)]

In [21]: | # import little function to do colors for us
from flip colors import flip colors

colors = flip colors(color,r)

colors.shape

Out[21]: (500, 3, 3)

In [22]: ipyvolume.figure()
s = ipyvolume.scatter(r[:,0,:].T, r[:,1,:].T, r[:,2,:].T,
marker='sphere',
color=colors)

ani = ipyvolume.animation control(s, interval=200)

ipyvolume.show()

Note that we can only use the animation control function on scatter plots or quiver plots, so we can't add
lines or anything here. Perhaps in a future release of ipyvolume !

Exercise

Try this with your own datasets!
Bonus: also try with animations of quiver plots

Bonus: is there anything else you want to animate? Should the size of the points change for example? (See
ipyvolume docs for examples)

Bonus: do this with the galaxy simulations

Part 2: ipyvolume + ipywidgets

Now let's combine the powers of widgets and ipyvolume to explore our datasets in 3D.
In [23]: import ipywidgets

In [24]: step = 100 # only do every 100th timestep
also, length of arrays
N = v_h.shape[2] # full time

decimate again
r =r hf{:,:,0:N:step]
v v_h[:,:,0:N:step]

r[(:,0,:].ravel().shape

out[24]: (150,)

In [25]: ipyvolume.figure()

x =1r[:,0,:].ravel()
y =r[:,1,:].ravel()
z =1r[:,2,:].ravel()

s = ipyvolume.scatter(x, y, 2z,
marker='sphere')

#1ipyvolume.show()
#colors.shape, r[:,0,:].shape

Now let's use widgets to change the size and color of our points:

In [26]: import ipywidgets
size = ipywidgets.FloatSlider(min=0, max=30, step=0.1)
color = ipywidgets.ColorPicker()

Now we'll use a function we haven't used before from ipywidgets - something that links our scatter plot features
to our widgets:

In [27]: ipywidgets.jslink((s, 'size'), (size, 'value'))
ipywidgets.jslink((s, 'color'), (color, 'value'))

Link(source=(Scatter(color selected=array('white', dtype='<U5'), geo='s
phere', line material=ShaderMaterial(),..

Finally, well put all these things in a row: our plot, then our two linked widgets:

In [28]: ipywidgets.VBox([ipyvolume.gcc(), size, color])

Exercise

Repeat this ipywidgets+ipyvolume for your own system.
Bonus: make different sliders for different planets to control size & color for each independently.
Bonus: make a quiver plot

Bonus: what other things can you think to add sliders/pickers for? Hint: check out the docs for
ipyvolume.quiver and ipyvolume.scatter to see whatyou can change.

Part 3 - embedding

Finally, we might want to embed our creations on the web somewhere. The first step is to make an html file
from our in-python widgets. Luckily, there is a function for that!

In [29]: myVBox = ipywidgets.VBox([ipyvolume.gcc(), size, color])

In [42]: | # if we don't do this, the bgplot will be really tiny in the standalone

html
ipyvolume.embed.layout = myVBox.children[1l].layout
ipyvolume.embed.layout.min width = "400px"

In [43]: | # NOTE!!!! offline=True may or may not work... depends
ipyvolume.embed.embed html("myPage.html", myVBox, offline=False, devmode
=False)

In [44]: !open myPage.html

Exercise

Generate a page for your own simulation with all the controls you want!

Bonus: though we won't be covering it explicitly, you can actually deploy this to the web to be hosted on github
pages. The first thing you need to do is call embed a little differently:

In []: ipyvolume.embed.embed html("myPage.html", myVBox, offline=False, devmode
=False)

Now, instead of opening it here, you need to add this file to your github page. Again, we won't cover this in
class, but feel free to ask for help after you've looked over the resources provided on today's course webpage
under the "deploying to the web" header.

Bonus: add more linkage to your plot by linking to bgplot. See the "Mixing ipyvolume with bgplot" example on
the ipyvolume docs: https://ipyvolume.readthedocs.io/en/latest/bgplot.htmi#
(https://ipyvolume.readthedocs.io/en/latest/bgplot.htmli#)

trying animation + widgets

