"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# before side by side, let's start with making 1 plot\n",
"#. Let's redo our IMDb plot with this new calling sequence\n",
"\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 1, figsize=(4, 2)) \n",
"\n",
"ax.hist(movies['IMDb']) # now we have to be contious about layout\n",
"ax.set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax.set_ylabel('Frequency')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'numpy.ndarray' object has no attribute 'hist'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mncols\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmovies\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'IMDb'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# now we have to be contious about layout\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_xlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'IMDb rating'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# note this is called with a \"set_\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Frequency'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'hist'"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQwAAACQCAYAAAD9X1UfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAJiklEQVR4nO3dX4xcdRnG8e8jS42iCLFVkbKmhn/WBgxsEYx/aoyR9oaYcEExkhCTDaYaL/EKTLjywsSQCmRDCOGmxESCSKBemNReYC1bUsoCESogbSWhgMEgRmx9vTgHMrvd6bw7+zuzO+c8n2STnZ2zs+/p2zyZnZ4+o4jAzCzjQys9gJmNDweGmaU5MMwszYFhZmkODDNLc2CYWdrAwJB0n6TXJc31uV+S7pR0WNIhSVeUH9Oa5j1bRuYZxv3Atae5fytwUf0xDdy9/LFsBdyP92wDDAyMiNgLvHWaQ64DHojKPuAcSeeVGtBGw3u2jBKvYZwPHOm5fbT+mrWL92xMFHgMLfK1Ra83lzRN9XSWs84668pLL720wI+3UjZt2sTc3NzJPnd7zy1x4MCBNyJi3TDfWyIwjgIX9NxeD/x9sQMjYgaYAZiamorZ2dkCP95KeeWVV9iwYcN/+9ztPbeEpL8N+70lfiV5BLipfhX9auDtiHitwOPa6uI92+BnGJJ2AVuAtZKOArcDZwJExD3AY8A24DDwLnBzU8Nac7Zv386ePXsAPuw9Wz8DAyMitg+4P4AdxSayFbFr1y4AJD0VEVML7/eeDXylp5ktgQPDzNIcGGaW5sAwszQHhpmlOTDMLM2BYWZpDgwzS3NgmFmaA8PM0hwYZpbmwDCzNAeGmaWlAkPStZL+UjdG/3SR+z8h6XeSnpb0rCT/1+cxtHv3boBN3rP1k3mbgTOAX1G1Rm8EtkvauOCwHcBzEXE5VXfGLyStKTyrNejkyZPs2LED4AW8Z+sj8wzjKuBwRLwUEe8BD1I1SPcK4OOSBHyMqn36RNFJrVH79+/nwgsvBHjPe7Z+MoGRaYveCXyBquPxGeAnEfG/IhPaSBw7dowLLuit7PSe7VSZwMi0RX8HOAh8FvgSsFPS2ac8kDQtaVbS7PHjx5c8rDWnKtQ69csLbnvPHZcJjExb9M3AQ/Wb3BwGXgZO6ZaPiJmImIqIqXXrhmo5t4asX7+eI0eOzPsS3rMtkAmMJ4GLJG2oX+C6gapButerwLcAJH0auAR4qeSg1qzNmzfz4osvAqzxnq2fzFslngB+BPweeB74dUQ8K+kWSbfUh90BfEXSM8AfgFsj4o2mhrbyJiYm2LlzJ8DFeM/Wh/r87to4v8HN6iTpwGKt4cPynlef5ezYV3qaWZoDw8zSHBhmlubAMLM0B4aZpTkwzCzNgWFmaQ4MM0tzYJhZmgPDzNIcGGaW5sAwszQHhpmlFWkNr4/ZIulg3Sb9x7Jj2igMag0H77nrJgYd0NMa/m2q9q0nJT0SEc/1HHMOcBdwbUS8KulTTQ1szVjQGj6F92yLKNUafiNVddurABHxetkxrWnJ1nDvueNKtYZfDJwraY+kA5JuKjWgjUayNdx77riBv5KQaw2fAK6k6nv8CPAnSfsi4oV5DyRNA9MAk5OTS5/WGpNsDfeeO65Ua/hRYHdE/KvueNwLXL7wgdwmvXolW8O9544r1Rr+W+BrkiYkfRT4MlWRrI2JZGu499xxRVrDI+J5YDdwCNgP3BsRc82NbaVlWsO9Z3NruM3j1vD2c2u4mY2EA8PM0hwYZpbmwDCzNAeGmaU5MMwszYFhZmkODDNLc2CYWZoDw8zSHBhmlubAMLO0YiXA9XGbJZ2UdH25EW1UMiXA4D132cDA6CkB3gpsBLZL2tjnuJ9T/Td4GzMLSoC9Z1tUqRJggB8DvwFcDDuGkiXA4D13WpESYEnnA98F7ik3mo1SpgTYe7ZMYGRKgH8J3BoRJ0/7QNK0pFlJs8ePH8/OaCOQLAH2njsu0xqeKQGeAh6UBLAW2CbpREQ83HtQRMwAM1A1MQ07tJWXLAH2njsuExgflAADx6jKYW/sPSAiNrz/uaT7gUcX/iWy1a1PCbD3bPMUKQG28ZcpATZzCbDN4xLg9nMJsJmNhAPDzNIcGGaW5sAwszQHhpmlOTDMLM2BYWZpDgwzS3NgmFmaA8PM0hwYZpbmwDCzNAeGmaUVaQ2X9D1Jh+qPJyRdXn5Ua9qg1nDv2Uq1hr8MfCMiLgPuoG5bsvGRbA33njuuSGt4RDwREf+ob+6jqnezMZJpDfeerUhr+AI/AB5fzlA2epnW8AW85w7KdHpmWsOrA6VvUv1F+mqf+6eBaYDJycnkiDYKydZwwHvusswzjExrOJIuA+4FrouINxd7oIiYiYipiJhat27dMPNaQ5Kt4d5zx2UC44PW8J426Ud6D5A0CTwEfD8iXig/pjWtT2u492zzlGoNvw34JHCXpIOS3Po6ZpKt4d5zx7k13OZxa3j7uTXczEbCgWFmaQ4MM0tzYJhZmgPDzNIcGGaW5sAwszQHhpmlOTDMLM2BYWZpDgwzS3NgmFmaA8PM0kq1hkvSnfX9hyRdUX5Ua1qiNdx77rhSreFbgYvqj2ng7sJzWsOSreHec8cVaQ2vbz8QlX3AOZLOKzyrNSjTGo733HmlWsOX2ixuq0yyNdx77rhSreGpZvHeNmngP5LmEj9/HKwF3ljpIZbpXOBs4JKer3nP87VhzzB/x0uSCYxMa3iqWTwiZqjfLUvSbMkquJXUhnORdA3wM6rOTvCeT9GWc1lOF2uR1vD69k31q+hXA29HxGvDDmUr4kmqFzP7tobjPXfewGcYEXFC0vut4WcA973fJl3ffw/wGLANOAy8C9zc3MjWhJ49P0TVGu492ylWrDVc0nT91HXs+VxG93grqS3nspzzWLHAMLPx40vDzSyt8cBo02XliXPZIunt+l3BDkq6bSXmHETSfZJe7/fPncPspC17bsuOoZk9ExGNfVC9SPpX4PPAGuBpYOOCY7YBj1P9G//VwJ+bnKnhc9kCPLrSsybO5evAFcBcn/uXtJO27LlNO25izxHR+DOMNl1WnjmXsRARe4G3TnPIUnfSlj23ZsfQyJ4bD4w2XVaenfMaSU9LelzSF0czWnFL3Ulb9tylHcMQO8lc6bkcxS4rXwUycz4FfC4i3pG0DXiY6mKocbPUnbRlz13aMQyxk6afYRS7rHwVGDhnRPwzIt6pP38MOFPS2tGNWMxSd9KWPXdpxzDETpoOjDZdVj7wXCR9RpLqz6+i+vN9c+STLt9Sd9KWPXdpxzDEThr9lSRadFl58lyuB34o6QTwb+CGqF+OXk0k7aJ6tX+tpKPA7cCZMNxO2rLnNu0Yyu8ZfKWnmS2Br/Q0szQHhpmlOTDMLM2BYWZpDgwzS3NgmFmaA8PM0hwYZpb2f0xGK9QI6xOaAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(4, 2)) \n",
"\n",
"ax.hist(movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax.set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax.set_ylabel('Frequency')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([,\n",
" ],\n",
" dtype=object)"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ax # my array of axes"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ax[0] # so this element I can actually plot with because its a matplotlib axes"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAACeCAYAAAD39ecLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWR0lEQVR4nO3de7RdZX3u8e9jAnIRRJvAwUAa7IlSdMgtUk61pyBFuWgj9VLACmVgU1pQa9tziI5WHcPBGNhWpRwuMUUEbCEgokQNIGorniGXBEQuQTQNEQKUxMsRpBRMfM4f77t1ZbN39tx7rbnWXuH5jLHGmnOuuebvt3fmzm9e3vm+sk1EREQ3njfoBCIiYvilmERERNdSTCIiomspJhER0bUUk4iI6FqKSUREdC3FJKIFki6WtEHSPeN8LknnSloj6S5JB/U7x4heSjGJaMclwFFb+fxoYH59LQIu7ENOEa1prZiMdWQm6cOSHpZ0Z30d0/HZ++tR2v2S3tCx/GBJd9fPzpWktnKO6BXbNwE/3soqC4HLXNwC7CZpz/5kF9F7bZ6ZXMLYR2afsH1Afa0AkLQfcDzwivqdCyTNqOtfSDlyGzmK29rRXsSwmAM81DG/vi6LGEoz29qw7ZskzWu4+kJgme2ngQckrQEOkbQO2NX2zQCSLgPeDFw30QZnzZrlefOaho+YnNtvv/2Htmd3sYmxzrDH7NtI0iLKARU777zzwfvuu28XYSPG181+3Vox2YozJJ0ErAL+yvZPKEdkt3SsM3KU9vM6PXr5hObNm8eqVat6k3HEKJJ+0OUm1gN7d8zvBTwy1oq2lwJLARYsWODs19GWbvbrft+AvxD4DeAA4FHgY3X5eEdpjY/eoBzBSVoladXGjRu7zTWiTcuBk2qrrkOBn9p+dNBJRUxVX89MbD82Mi3pn4Av1dnxjtLW1+nRy8fb/hZHcL3JOmLyJF0BHAbMkrQe+BCwHYDtJcAK4BhgDfCfwCmDyTSiN/paTCTt2XH0dRww0tJrOXC5pI8DL6HcaL/N9mZJT9Qjt1uBk4D/08+cI6bC9gkTfG7g9D6lE9G61orJOEdmh0k6gHKpah3wpwC275V0FbAa2AScbntz3dSfUVqG7Ui58T7hzfeY3uYt/vKUvrfu7GN7nElE9EqbrbnGOjL71FbWPws4a4zlq4BX9jC1iIjosTwBHxERXUsxiYiIrqWYRERE11JMIiKiaykmERHRtRSTiIjoWopJRER0LcUkIiK6lmISERFdSzGJiIiupZhERETXUkwiWiLpKEn3S1ojafEYn79Q0hclfUfSvZLSDX0MrRSTiBZImgGcDxwN7AecIGm/UaudDqy2vT+lh+2PSdq+r4lG9EiKSUQ7DgHW2F5r+xlgGbBw1DoGdpEk4AXAjylDMEQMnRSTiHbMAR7qmF9fl3U6D/hNyuihdwPvtf2L/qQX0VspJhHt0BjLRg8l/QbgTsroogcA50na9VkbkhZJWiVp1caNG3ufaUQPpJhEtGM9sHfH/F6UM5BOpwDXuFgDPADsO3pDtpfaXmB7wezZs1tLOKIbKSYR7VgJzJe0T72pfjywfNQ6DwJHAEjaA3g5sLavWUb0SGvD9kY8l9neJOkM4AZgBnCx7XslnVY/XwJ8BLhE0t2Uy2Jn2v7hwJKO6EKKSURLbK8AVoxatqRj+hHg9f3OK6INucwVERFdSzGJiIiu5TJXDI15i788pe+tO/vYHmcSEaM1OjOR9Mq2E4mIiOHV9DLXEkm3SfpzSbu1mlFERAydRsXE9muBd1Aewlol6XJJR7aaWUREDI3GN+Btfx/4G+BM4HeBcyV9V9IftJVcREQMh0Y34CW9itL1w7HAjcCbbN8h6SXAzcA1Y3znYuCNwAbbr6zLXgxcCcwD1gFvt/2T+tn7gVOBzcB7bN9Qlx8MXALsSGmz/17bo/s4igGZ6k3xiNi2ND0zOQ+4A9jf9um274BfPnT1N+N85xLgqFHLFgNfsz0f+Fqdp47zcDzwivqdC+p4EAAXAouA+fU1epsRETFgTYvJMcDltp8CkPQ8STsB2P7MWF+wfRNlfIZOC4FL6/SlwJs7li+z/bTtB4A1wCGS9gR2tX1zPRu5rOM7ERExTTQtJl+lXGYasVNdNll72H4UoL7vXpePN/bDnDo9enlEREwjTYvJDrZ/NjJTp3fqYR7jjf3QZEyIX20k4z5ERAxE02LypKSDRmbqTfGnphDvsXrpivq+oS4fb+yH9XV69PIxZdyHiIjBaFpM/gL4rKRvSvompUXWGVOItxw4uU6fDFzbsfx4Sc+XtA/lRvtt9VLYE5IOreNkn9TxnYhpTdJRku6XtEbS4nHWOUzSnZLulfSNfucY0SuNmgbbXilpX8rgPQK+a/vnW/uOpCuAw4BZktYDHwLOBq6SdCplYKC31e3fK+kqYDWwCTjd9ua6qT/jV02Dr6uviGmttkY8HziScoa9UtJy26s71tkNuAA4yvaDknYfe2sR099kOnp8NeX5kJnAgZKwfdl4K9s+YZyPjhhn/bOAs8ZYvgpI32AxbA4B1theCyBpGaXV4uqOdU6kDNv7IIDtDc/aSsSQaPrQ4meA3wDupDxUCOVG+LjFJOI5bqwWir81ap2XAdtJ+jdgF+Aft3aAFjGdNT0zWQDslyfPIxpr0hJxJnAw5Wx9R+BmSbfY/t4WG5IWUR7cZe7cuS2kGtG9pjfg7wH+W5uJRGxjxmuhOHqd620/Wcd+vwnYf/SG0koxhkHTM5NZwGpJtwFPjyy0/futZBUx/FYC82vrxIcp3QWdOGqda4HzJM0EtqdcBvtEX7OM6JGmxeTDbSYRsa2xvUnSGcANwAzg4tpq8bT6+RLb90m6HrgL+AVwke17Bpd1xNQ1bRr8DUm/Dsy3/dXaL9eMib4X8VxmewWlp+vOZUtGzf898Pf9zCuiDU2H7f0T4Grgk3XRHOALbSUVERHDpekN+NOB1wCPwy8HysoDVhERATQvJk/bfmZkpt4wTDPhiIgAmheTb0j6ALBjHfv9s8AX20srIiKGSdNishjYCNwN/CnlpuJ4IyxGRMRzTNPWXL8A/qm+IiIittC0b64HGOMeie2X9jyjiIgYOpPpm2vEDpSu41/c+3QiImIYNbpnYvtHHa+HbZ8DvK7l3CIiYkg0vcx1UMfs8yhnKru0klFERAydppe5PtYxvQlYB7y959lERMRQatqa6/C2E4mIiOHV9DLXX27tc9sf7006EdsOSUcB/0jpFPUi22ePs96rgVuAP7R9dR9TjOiZybTmejWwvM6/iTKQz0PjfiPiOUzSDOB84EjKIFgrJS23vXqM9T5K6ao+YmhNZnCsg2w/ASDpw8Bnbb+rrcQihtwhwBrbawEkLQMWAqtHrfdu4HOUg7WIodW0O5W5wDMd888A83qeTcS2Yw5bnrmvr8t+SdIc4DhgizFOIoZR0zOTzwC3Sfo85Un444DLWssqYvhpjGWje5E4BzjT9mZprNXrhqRFwCKAuXPn9izBiF5q2prrLEnXAb9TF51i+9vtpRUx9NYDe3fM7wU8MmqdBcCyWkhmAcdI2mR7i4HnbC8FlgIsWLAgQz/EtNT0zARgJ+Bx25+WNFvSPrYfaCuxiCG3EpgvaR/gYeB44MTOFWzvMzIt6RLgS6MLScSwaNo0+EOUo6iXA58GtgP+mTL6YkSMYnuTpDMorbRmABfbvlfSafXz3CeJbUrTM5PjgAOBOwBsPyJpyt2pSFoHPAFsBjbZXiDpxcCVlBv764C32/5JXf/9wKl1/ffYTjPKmPZsr6CM/dO5bMwiYvuP+5FTRFuatuZ6xrapNxAl7dyD2IfbPsD2SI/Ei4Gv2Z4PfK3OI2k/yiWCVwBHARfUtvkRETFNNC0mV0n6JLCbpD8BvkrvB8paCFxapy8F3tyxfJntp+s9mjWUNvwRETFNTHiZS6WpyZXAvsDjlPsmH7R9YxdxDXxFkoFP1tYqe9h+FMD2o5J2r+vOoXQ1MeJZ7fUjImKwJiwmti3pC7YPBropIJ1eU++77A7cKOm7W1m3SXv9smLa40dEDETTy1y31M7oesL2I/V9A/B5ymWrxyTtCVDfN9TVm7TXH9nuUtsLbC+YPXt2r9KNiIgJNC0mh1MKyr9LukvS3ZLumkpASTuPtASrN/JfD9xD6UTy5LraycC1dXo5cLyk59c2+/OB26YSOyIi2rHVy1yS5tp+EDi6hzH3AD5fn/qdCVxu+3pJKyk3+k8FHqSMM09tm38VpYO8TcDptjf3MJ+IiOjSRPdMvkDpLfgHkj5n+y3dBqy9qO4/xvIfAUeM852zgLO6jR0REe2Y6DJX583vl7aZSEREDK+Jzkw8znRsY+Yt/vKgU4iIITZRMdlf0uOUM5Qd6zR13rZ3bTW7iIgYClstJrbTbUlEREyoadPgiIiIcaWYRLRE0lGS7pe0RtLiMT5/R31u6y5J35L0rFaOEcMixSSiBbVn6/Mpz2jtB5xQe8Du9ADwu7ZfBXyEOppixDBKMYloxyHAGttrbT8DLKP0gP1Ltr81MmYPpTPTvfqcY0TPpJhEtGMO8FDH/ES9XZ8KXNdqRhEtmswY8BHR3GR6uz6cUkxeO87n6Q07pr2cmUS0o1Fv15JeBVwELKxdCj1LesOOYZBiEtGOlcB8SftI2p4y9PTyzhUkzQWuAd5p+3sDyDGiZ3KZK6IFtjdJOgO4AZgBXFx7wD6tfr4E+CDwa8AFtRftTbYXDCrniG6kmES0xPYKYMWoZUs6pt8FvKvfeUW0IZe5IiKiaykmERHRtRSTiIjoWopJRER0LcUkIiK6ltZc25iMmBgRg5Azk4iI6FqKSUREdC3FJCIiupZiEhERXcsN+NjmTbVRwrqzj+1xJhHbrhSTaSqtsiJimOQyV0REdG1oiomkoyTdL2mNpMWDzidiIhPtsyrOrZ/fJemgQeQZ0QtDcZlL0gzgfOBIygh2KyUtt716sJlNLJernpsa7rNHA/Pr67eAC+t7xNAZljOTQ4A1ttfafgZYBiwccE4RW9Nkn10IXObiFmA3SXv2O9GIXhiKMxNgDvBQx/x6ujiCy9lC9EGTfXasdeYAj7abWkTvDUsx0RjL/KyVpEXAojr7M0n3t5TPLOCHLW078adJfH10q/F/faKvj7Fs9D47lf36aUn3TBC7LYP6dx/k/vZc+5lfPtUvDksxWQ/s3TG/F/DI6JVsLwWWtp2MpFWDHKs78adF/HkTrNZkn530fj3In31QsfMz9zfuVL87LPdMVgLzJe0jaXvgeGD5gHOK2Jom++xy4KTaqutQ4Ke2c4krhtJQnJnY3iTpDOAGYAZwse17B5xWxLjG22clnVY/XwKsAI4B1gD/CZwyqHwjujUUxQTA9grKH9900PqltMQf/vhj7bO1iIxMGzi9jdgtGVTs/MxDEFdlf46IiJi6YblnEhER01iKSUOS9pb0r5Luk3SvpPcOKI8Zkr4t6UsDir+bpKslfbf+Lv5Hn+O/r/7+75F0haQdWo53saQNnc1xJb1Y0o2Svl/fX9RC3IF0xdIg7jtqvLskfUvS/r2I2yR2x3qvlrRZ0lv7FVfSYZLurPveN3oRt0lsSS+U9EVJ36mxe3Jfbaz9etTnk9+/bOfV4AXsCRxUp3cBvgfsN4A8/hK4HPjSgH4PlwLvqtPbA7v1MfYc4AFgxzp/FfDHLcf8n8BBwD0dy/4OWFynFwMf7XHMGcC/Ay+tv+PvjN7XKDfur6M8q3IocGuf4v428KI6fXQv4jaN3bHe1yn3ot7ap595N2A1MLfO797Hf+cPjOxfwGzgx8D2bezX3e5fOTNpyPajtu+o008A91H+c+sbSXsBxwIX9TNuR/xdKTvhpwBsP2P7//U5jZnAjpJmAjsxxnMZvWT7JsofcKeFlKJKfX9zj8MOqiuWCePa/pbtn9TZWyjPxvRC0y6T3g18DtjQx7gnAtfYfhDAdj9jG9hFkoAXUPbFTd0GHme/7jTp/SvFZAokzQMOBG7tc+hzgP8N/KLPcUe8FNgIfLpeartI0s79Cm77YeAfgAcpXY781PZX+hW/wx6uz4PU9917vP3xulmZ7DptxO10KuXotRcmjC1pDnAcsITeafIzvwx4kaR/k3S7pJP6GPs84DcpB013A++13Y+//0nvXykmkyTpBZQjo7+w/Xgf474R2GD79n7FHMNMyqnxhbYPBJ6kXObpi3pvYiGwD/ASYGdJf9Sv+H3Us65YWohbVpQOpxSTM7uMOZnY5wBn2t7co5hN484EDqZcFXgD8LeSXtan2G8A7qTs7wcA59UrBG2b9P6VYjIJkrajFJJ/sX1Nn8O/Bvh9Sesop8Ovk/TPfc5hPbDe9sgZ2dWU4tIvvwc8YHuj7Z8D11Cu4ffbYyOn/PW9V5c9RvSsK5YW4iLpVZRLrQtt/6jLmJOJvQBYVv8G3gpcIKnbS4xNf9fX237S9g+Bm4BeNDxoEvsUyiU2215DuWe4bw9i9yK3LaSYNFSvWX4KuM/2x/sd3/b7be/l0ifU8cDXbff1qNz2fwAPSRrpDO4Iyo3JfnkQOFTSTvXf4wjKvat+Ww6cXKdPBq7t8fYH1RXLhHElzaUU8Xfa/l6X8SYV2/Y+tufVv4GrgT+3/YW241L+fX9H0kxJO1F6f+7Fftck9oOU/RxJe1A6Ylzbg9gTmfT+NTRPwE8DrwHeCdwt6c667AMuTzk/l7wb+Je686+lj12A2L5V0tXAHZSbkN+m5SeFJV0BHAbMkrQe+BBwNnCVpFMpf+xv62VMD6grloZxPwj8GuWsAGCTe9AhYcPYPdckru37JF0P3EW5X3mR7a57bm74M38EuETS3ZRLT2fWs6OujLNfb9cRd9L7V56Aj4iIruUyV0REdC3FJCIiupZiEhERXUsxiYiIrqWYRERE11JMpilJP6vv8yRZ0kc6Ppsl6eeSzqvzH5b0cO3V9PuSrpG0X8f66yTN6lFe8ySd2DG/QNK5vdh2RAyvFJPhsBZ4Y8f824DRwxZ/wvYBtucDVwJflzR7KsFqJ4rjmUfp+A4A26tsv2cqcSJi25FiMhyeAu6TNPJw2B9Sul8fk+0rga/Q8Z8+8L8k3VZf/330d+rZzVJJXwEuq2cg35R0R32NdFtyNuVp4DtVxhY5THVslbqNi2uHeGslvadj+3+rMgbKjSrjkPx1V7+RiJhW8gT88FgGHC/pP4DNlH5yXrKV9e9gyz58Hrd9SO3x9By2PNMZcTDwWttP1W4jjrT9X5LmA1dQ+kZaDPy17TdCGTRo1Db2BQ6njPlyv6QLKf0YvYXS0/LMmtsgO6yMiB5LMRke11O6VniMchlrIqN7/byi4/0T43xnue2n6vR2lB5KD6AUr6a9pH7Z9tPA05I2AHsArwWuHdm2pC823FZEDIlc5hoSdfCc24G/ovRcPJED2bIzOo8z3enJjun3UQrX/pQzku0bpvp0x/RmygHLWN1ZR8Q2JMVkuHyM0tHbVrv9lvQW4PX86mwEyn2WkfebG8R6IfBoHYjnnZSO6ACeoFzCmoz/C7xJ0g4q48EcO8nvR8Q0l8tcQ8T2vTy7FdeI99WBonYG7gFeZ3tjx+fPl3Qr5QDihAbhLgA+J+ltwL/yq7OWu4BNkr4DXELpuXeivFdKWk4Z4/oHwCrgpw1yiIghkV6Doy8kvcD2z+qN/ZuARbbvGHReEdEbOTOJfllaH6TcAbg0hSRi25Izk4iI6FpuwEdERNdSTCIiomspJhER0bUUk4iI6FqKSUREdC3FJCIiuvb/AZzTxrIA3NVbAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(6, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAACeCAYAAAD39ecLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAYKklEQVR4nO3dfbRdVXnv8e/P8P4SXppAQzQNtkcxOATJMTdXbSt4KQG1waotoEIZ2NzY0KK3tgT7RoeDMWgdXikDSJrSlMRaYqxUojegiCJ2EEgOGPJqzDFBDHBJRCtIucGE5/4x54GVnb3PWees/Zr8PmPssdea62U+Z2ftPHutNdecigjMzMyqeFWnAzAzs97nZGJmZpU5mZiZWWVOJmZmVpmTiZmZVeZkYmZmlTmZmLWApMWSdkra0GC5JN0oaVDSOklntTtGs2ZyMjFrjduAWcMsPx/oy685wII2xGTWMk4mZi0QEfcDPxlmldnA0kgeBI6XNKk90Zk1n5OJWWdMBn5UmN+Ry8x60iGdDqBVJkyYEFOnTu10GHaAevjhh38cERMr7EJ1yur2bSRpDulSGEcfffT00047rUK1Zo1VOa4P2GQydepUBgYGOh2GHaAk/bDiLnYArynMvxp4st6KEbEIWATQ398fPq6tVaoc177MZdYZK4BLc6uumcDPIuKpTgdlNlYH7JmJWSdJuh14BzBB0g7gr4FDASJiIbASuAAYBP4LuLwzkZo1h5OJWQtExMUjLA9gXpvCMWs5X+Yyq+fa4zodgVlPcTIxM7PKnEzMzKwyJxMzM6vMycTMzCpzMjEzs8pankwkjZP0XUlfzfMnSrpH0tb8fkJh3Wtyl9xbJJ1XKJ8uaX1edqOkel1RmJlZh7TjzOQqYHNhfj5wb0T0AffmeSRNAy4CTid13X2LpHF5mwWkvomGuuwermtvMzNrs5YmE0mvBt4F3Foong0sydNLgAsL5csiYndEbCc9GTwjd8s9PiJW5Qe9lha2MTOzLtDqM5MbgD8DXiqUnTzUB1F+PymXN+qSe3Keri03M7Mu0bJkIundwM6IeLjsJnXKYpjyenXOkTQgaWDXrl0lqzUzs6paeWbyNuC3JT0GLAPOkfQvwNNDI8rl9515/UZdcu/I07Xl+4mIRRHRHxH9EydWGWrCzMxGo2XJJCKuiYhXR8RU0o31b0bEh0hdb1+WV7sMuDNPrwAuknS4pFNJN9pX50thz0mamVtxXVrYxszMukAnnjO5HjhX0lbg3DxPRGwElgObgLuBeRGxN2/zUdJN/EHgB8Bd7Q7abLQkzcrN3Aclza+z/DhJX5H0qKSNktwNvfWstnRBHxH3Affl6WeAdzZY7zrgujrlA8AbWxehWXPlZu03k34w7QDWSFoREZsKq80DNkXEeyRNBLZI+nxEvNiBkM0q8RPwZq0xAxiMiG05OSwjNX8vCuDYfPn2GOAnwJ72hmnWHE4mZq3RqKl70U3AG0gNStYDV0XES5j1ICcTs9Yo06T9PGAtcApwJnCTpPH77chN3q0HOJmYtUajpu5FlwN3RDIIbAdOq92Rm7xbL3AyMWuNNUCfpFMlHUZqHr+iZp3HyY1RJJ0MvB7Y1tYozZqkLa25zA42EbFH0pXA14BxwOKI2Chpbl6+EPgUcJuk9aTLYldHxI87FrRZBU4mZi0SESuBlTVlCwvTTwK/1e64zFrBl7nMzKwyJxMzM6vMycTMzCorlUwkuSsTMzNrqOyZyUJJqyX9oaTjWxqRmZn1nFLJJCLeDnyQ9BDWgKR/lXRuSyMzM7OeUfqeSURsBf4CuBr4TeBGSd+T9DutCs7MzHpD2Xsmb5L0WWAzcA7wnoh4Q57+bINtjsiXxobGavibXH6ipHskbc3vJxS2uSaP/bBF0nmF8umS1udlN+ZeVs3MrEuUPTO5CXgEOCMi5kXEI/DyQ1d/0WCb3cA5EXEGqRO7WZJmAvOBeyOiD7g3zyNpGqnLidOBWcAteUwIgAXAHNLoi315uZmZdYmyyeQC4F8j4gUASa+SdBRARHyu3ga587qf59lD8ytIYzosyeVLgAvz9GxgWUTsjojtpFEVZ+Rx4sdHxKqICGBpYRszM+sCZZPJN4AjC/NH5bJhSRonaS2wE7gnIh4CTs7jupPfT8qrNxr/YXKeri03M7MuUTaZHFE4yyBPHzXSRhGxNyLOJHW/PWOE51Uajf9QZlyItAOP+2Bm1hFlk8nzks4ampE0HXihbCUR8Z+kMeBnAU/nS1fk9515tUbjP+zI07Xl9erxuA9mZh1QNpl8DPiipO9I+g7wBeDK4TaQNHHoAUdJRwL/A/geaUyHy/JqlwF35ukVwEWSDpd0KulG++p8Kew5STNzK65LC9uYdS1Js3LLxEFJ8xus8w5Ja3OLx2+3O0azZinVBX1ErJF0GmnwHgHfi4hfjLDZJGBJbpH1KmB5RHxV0ipguaQrSIMDfSDXsVHScmATsAeYFxF7874+CtxGum9zV36Zda183N8MnEs6u14jaUVEbCqsczxwCzArIh6XdFL9vZl1v9GMZ/IWYGre5s2SiIiljVaOiHXAm+uUP0MeXa7OsuuA6+qUDwDuH8x6yQxgMCK2AUhaRmqxuKmwziWkYXsfB4iInfvtxaxHlEomkj4H/CqwFhg6Wxhqpmtm+6vXOvG/1azzOuBQSfcBxwJ/P9wPNLNuVvbMpB+Ylp/zMLORlWmFeAgwnXSmfiSwStKDEfH9fXYkzSE9tMuUKVNaEKpZdWVvwG8AfrmVgZgdYBq1Tqxd5+6IeD6P/X4/cEbtjtxK0XpB2TOTCcAmSatJ3aQAEBG/3ZKozHrfGqAvt0x8gtRV0CU169wJ3CTpEOAw0mWwun3dmXW7ssnk2lYGYXagiYg9kq4EvgaMAxbnFotz8/KFEbFZ0t3AOuAl4NaI2NC5qM3GrmzT4G9L+hWgLyK+kfvlGjfSdmYHs4hYCaysKVtYM/9p4NPtjMusFcp2Qf8HwL8B/5CLJgNfblVQZmbWW8regJ8HvA14Fl4eKMsPWJmZGVA+meyOiBeHZvINQzcTNjMzoHwy+bakTwJH5rHfvwh8pXVhmZlZLymbTOYDu4D1wP8k3VRsNMKimZkdZMq25noJ+Mf8MjMz20fZvrm2U+ceSUS8tukRmZlZzxlN31xDjiB1G39i88MxM7NeVOqeSUQ8U3g9ERE3AOe0ODYzM+sRZR9aPKvw6s9dQhw7wjavkfQtSZvzKHJX5fITJd0jaWt+P6GwzTV5VLotks4rlE+XtD4vuzGPuGhmZl2i7GWuzxSm9wCPAb87wjZ7gD+JiEckHQs8LOke4PeBeyPi+jyU6XzgaknTSJ3hnQ6cAnxD0uvyaIsLSF1wP0hqSTYLj7ZoZtY1yrbmOnu0O85jtz+Vp5+TtJnUDcts4B15tSXAfcDVuXxZROwGtksaBGZIegwYHxGrACQtBS7EycTMrGuUbc31v4ZbHhH/e4Ttp5KG8H0IODknGiLiqcK415NJZx5DduSyX+Tp2nKzriZpFvD3pE5Rb42I6xus9xbSsf97EfFvbQzRrGnKPrTYD3yU9J/4ZGAuMI1032SkeyfHAF8CPhYRzw63ap2yGKa8Xl1zJA1IGti1a9dwYZm1lKRxwM3A+aTvysX5Um699f6W1FW9Wc8azeBYZ0XEcwCSrgW+GBEfGW4jSYeSEsnnI+KOXPy0pEn5rGQSsDOXNxqZbkeeri3fT0QsAhYB9Pf3u+8w66QZwGBEbAOQtIx0KXdTzXp/RPqOvKW94Zk1V9kzkynAi4X5F4Gpw22QW1z9E7C55jLYCuCyPH0ZabS5ofKLJB2eR6frA1bnS2LPSZqZ93lpYRuzbjUZ+FFhfr/Ls5ImA+8F9hnjxKwXlT0z+RywWtK/ky4xvRdYOsI2bwM+DKyXtDaXfRK4Hlgu6QrgcdIDkORR6JaTfrntAeblllyQLrHdBhxJuvHum+/W7cpcnr0BuDoi9g7X2l3SHFJrRqZMmdK0AM2aqWxrrusk3QX8ei66PCK+O8I2/0H9LxTAOxvVA1xXp3wAeGOZWM26RKPLtkX9wLKcSCYAF0jaExH7DDzny7fWC8qemQAcBTwbEf8saaKkUyNie6sCM+txa4C+fMn2CdIzVJcUV4iIU4emJd0GfLU2kZj1irJNg/+a9Cvq9cA/A4cC/0K6lGVmNSJij6QrSa20xgGL86XcuXm575PYAaXsmcl7Sc+JPAIQEU/mp9rNrIGIWEnqsaFYVjeJRMTvtyMms1Yp25rrxYgI8g1ESUe3LiQzM+s1ZZPJckn/ABwv6Q+Ab+CBsszMLBvxMld+tuMLwGnAs6T7Jn8VEfe0ODYzM+sRIyaTiAhJX46I6YATiJmZ7afsZa4Hc2d0ZmZm+ynbmutsYG7uDv550sOIERFvalVgZmbWO4ZNJpKmRMTjpJ5PzczM6hrpzOTLpN6CfyjpSxHxvnYEZWZmvWWkeybFvrVe28pAzMysd42UTKLBtJmZ2ctGusx1hqRnSWcoR+ZpeOUG/PiWRmdmZj1h2DOTiBgXEeMj4tiIOCRPD80Pm0gkLZa0U9KGQtmJku6RtDW/n1BYdo2kQUlbJJ1XKJ8uaX1edqOGG/jBzMw6ouxzJmNxGzCrpmw+cG9E9AH35nny2NgXAafnbW7JY2MDLCANDNSXX7X7NDOzDmtZMomI+4Gf1BTPBpbk6SXAhYXyZRGxO4+RMgjMyGPEj4+IVbmjyaWFbcy6mqRZ+Ux7UNL8Oss/KGldfj0g6YxOxGnWDK08M6nn5DymO/n9pFzeaLzsyXm6ttysq+Uz65tJz2hNAy7OZ+BF24HfzA//foo8mqJZL2p3Mmmk0XjZZcbRfmUn0hxJA5IGdu3a1bTgzMZgBjAYEdsi4kVgGekM/GUR8UBE/DTPPkga2tesJ7U7mTydL12R33fm8kbjZe9g3y9YvXG0XxYRiyKiPyL6J06c2NTAzUap0dl2I1cAd7U0IrMWancyWQFclqcvA+4slF8k6fA8ZnYfsDpfCntO0szciuvSwjZm3az0WbWks0nJ5OoGy33GbV2vZclE0u3AKuD1knZIugK4HjhX0lbg3DxPRGwElgObgLuBeRGxN+/qo8CtpJvyP8C/3qw3NDrb3oekN5GO79kR8Uy9HfmM23pB2V6DRy0iLm6w6J0N1r8OuK5O+QDwxiaGZtYOa4C+fKb9BKnp+yXFFSRNAe4APhwR329/iGbN07JkYtazrj2u8i4iYo+kK4GvAeOAxRGxUdLcvHwh8FfAL5GeqwLYExH9lSs36wAnE7MWiYiVwMqasoWF6Y8AH2l3XGat0C1Ng83MrIc5mZiZWWVOJmZmVpmTiZmZVeZkYmZmlTmZmJlZZU4mZmZWmZOJmZlV5mRiZmaVOZmYmVllTiZmZlaZk4mZmVXmZGJmZpX1TDKRNEvSFkmDkuZ3Oh6zkYx0zCq5MS9fJ+msTsRp1gw9kUwkjQNuBs4HpgEXS5rW2ajMGit5zJ5PGqK6D5gDLGhrkGZN1CvjmcwABiNiG4CkZcBs0jC/Zs3RhEGxCsocs7OBpRERwIOSjpc0KSKeamYgZu3QE2cmwGTgR4X5HbnMrDmam0ig3DHr49oOGL1yZqI6ZbHfStIc0uUCgJ9L2tJgfxOAHzcptiocx766JQ6ACfyNhovlV0bYvswxO5bjerekDSPU3Sqd+vfp5HFxsP3Nrx/rhr2STHYArynMvxp4snaliFgELBppZ5IGumGsbcfRnXFAU2Ipc8yO+rju5GfUqbr9N7e33rFu2yuXudYAfZJOlXQYcBGwosMxmQ2nzDG7Arg0t+qaCfzM90usV/XEmUlE7JF0JfA1YBywOCI2djgss4YaHbOS5ublC4GVwAXAIPBfwOWditesqp5IJgARsZL05WuGES+FtYnj2Fe3xAFNiKXeMZuTyNB0APPaHVcFnarbf3MP1Kt0PJuZmY1dr9wzMTOzLnZQJZN2d8ki6TFJ6yWtHWolIelESfdI2prfTyisf02ObYuk8yrUu1jSzmIT0rHUK2l6jn8wd/tRrynrWGK5VtIT+XNZK+mCVsci6TWSviVps6SNkq7q5OdSIt6OdMVSot4P5vrWSXpA0hnNqLdM3YX13iJpr6T3t6teSe/Ix+pGSd9uRr1l6pZ0nKSvSHo0192U+2r1vpc1y0d/fEXEQfEi3QT9AfBa4DDgUWBai+t8DJhQU/Z3wPw8PR/42zw9Lcd0OHBqjnXcGOv9DeAsYEOVeoHVwH8nPQ9xF3B+k2K5FvhEnXVbFgswCTgrTx8LfD/X15HPpeqxSrpxf1eOYSbwUJvqfStwQp4+vxn1lq27sN43Sfei3t+mv/l4Us8FU/L8SW38d/5k4ZicCPwEOKwJde/3vax6fB1MZyYvd28RES8CQ91btNtsYEmeXgJcWChfFhG7I2I7qYXPjLFUEBH3kw66MdcraRIwPiJWRTq6lha2qRpLIy2LJSKeiohH8vRzwGbS0+Yd+VxGUOZYfbkrloh4EDg+x9bSeiPigYj4aZ59kPRsTDOU/X7+EfAlYGcb670EuCMiHgeIiHbWHcCx+ez3GNJ3aU/Vikt8L0d9fB1MyaQTXVcE8HVJDys9xQxwcuRnCfL7SW2Kb7T1Ts7TrYrnynz6vLhwaaktsUiaCrwZeIju+1yGq3u067Si3qIrSL9em2HEuiVNBt4LLKR5yvzNrwNOkHRf/i5f2sa6bwLeQHqYdT1wVUS81KT6q8a2j4MpmZTquqLJ3hYRZ5EuB8yT9BvDrNuJ+Iart5XxLAB+FTgTeAr4TLtikXQM6ZftxyLi2eFWbXUsY6h7tOu0ot60onQ2KZlcXbHO0dR9A3B1ROxtUp1l6z0EmA68CzgP+EtJr2tT3ecBa4FTSN+XmySNb0LdIxn18XUwJZNSXVc0U0Q8md93Av9OOq19euh0Mb8PnTK3Or7R1ruDfS9hNC2eiHg6IvbmX1j/yCuX81oai6RDSYnk8xFxRy7ums+loGldsbSgXiS9CbgVmB0Rz1SsczR19wPLJD0GvB+4RVLVS4xlP+u7I+L5iPgxcD/QjIYHZeq+nHSJLSJiENgOnNaEupsR276acSOpF16kXxfbSDdTh252nd7C+o4Gji1MPwDMAj7Nvjd8/y5Pn86+N3y3McYb8Hl/U9n3pveo6yV1CTKTV240X9CkWCYVpj9OujfR0ljydkuBG2rKO/a5VDlWSb+SizdIV7ep3imk+0dvbfffXLP+bTTnBnyZv/kNwL153aOADcAb21T3AuDaPH0y8AQ1jXoq1L/P97Lq8dW0g6EXXqQWCt8ntaD48xbX9dp8cDwKbByqD/ilfGBuze8nFrb58xzbFiq0EAJuJ10++gXpF8YVY6mX9EtwQ152E/kh1ybE8jnS9d91pP6pJrU6FuDtpNP0daTLBmvz8dCRz2UsxyowF5ibp0UafOsH+bPsb1O9twI/LXyGA+36m2vWvY0mJJOy9QJ/SmrRtYF0ibRd/86nAF/P/8YbgA81qd5638tKx5efgDczs8oOpnsmZmbWIk4mZmZWmZOJmZlV5mRiZmaVOZmYmVllTiZdStLP8/tUSSHpU4VlEyT9QtJNeb7YC+9WSXdImlZY/zFJE5oU11RJlxTm+yXd2Ix9m1nvcjLpDduAdxfmP0B6dqXosxFxZkT0AV8Avilp4lgqkzTcCJxTSR3fARARAxHxx2Opx8wOHE4mveEFYLOk/jz/e8DyRitHxBdIDzpdUij+U0mr8+vXarfJZzeLJH0dWJrPQL4j6ZH8emte9Xrg1/NZ0MfzOA9fLexjce4Qb5ukPy7s/y8lfU9pzJDbJX2i0idiZl2lZ8aAN5YBF0n6v8BeUj85pwyz/iPs24fPsxExI/d4egP7nukMmQ68PSJekHQUcG5E/D9JfaQnZvtJXY58IiLeDWnQoJp9nAacTRozZIukBaR+jN5H6qn3kBzbw6X/cjPrek4mveNu4FPA06TLWCOp7fXz9sL7ZxtssyIiXsjTh5J6KD2TlLzK9pL6fyJiN7Bb0k5Sf0JvB+4c2rekr5Tcl5n1CF/m6hGRBs95GPgTUs+3I3kzaQCol3fRYLro+cL0x0mJ6wzSGclhJUPdXZjeS/rB0vRhbc2suziZ9JbPkMZzGLbbb0nvA36LV85GIN1nGXpfVaKu44CnInUT/2HSEKMAz5EuYY3GfwDvkXREHk/kXaPc3sy6nC9z9ZCI2Mj+rbiGfFzSh0jd3W8AzomIXYXlh0t6iPQD4uIS1d0CfEnSB4Bv8cpZyzpgj6RHST23frdE3GskrSD1oPxDYAD4WYkYzKxHuNdgawtJx0TEz/ON/fuBOZHHZDez3uczE2uXRflByiOAJU4kZgcWn5mYmVllvgFvZmaVOZmYmVllTiZmZlaZk4mZmVXmZGJmZpU5mZiZWWX/H/7Qlh9VC+d4AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(6, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"\n",
"# on my SECOND set of axis I want to do a distribution of \"Year\" column\n",
"#ax[0].hist(movies['Years']) # This doesn't work because \"Years\" is NOT \"Year\"\n",
"ax[0].hist(movies['Year']) # I've updated the column that is being histogrammed\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"\n",
"plt.show()\n",
"# here we didn't update what axes we are plotting on so we overplotted stuff on \n",
"#. our first axes!"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAACcCAYAAACORIccAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAZL0lEQVR4nO3de5hU1bnn8e9PEFS0T6Kiw0Vt4xAZoojYMjgxahQT72IM3kbQo0dNRh81emaCJ2cmJNGI55kYTybqEY1GExUxasRbEqJGEx+iNHhDhQMCQgsKmnggclHgnT/2aijb6q7qpq7N7/M89dTeq/bea1XXqn5r396liMDMzKwj21S7AWZmVvscLMzMrCAHCzMzK8jBwszMCnKwMDOzghwszMysoLIFC0m3S1ouaXZO2QRJb0t6KT2Oy3ntKknzJc2V9NWc8oMkvZpe+4kklavNZmaWXzn3LH4OHJOn/McRMSw9HgeQNAQ4A/hCWucmST3S8jcDFwKD0iPfNs3MrIx6lmvDEfGspMYiFz8ZmBwR64CFkuYDIyQtAhoiYjqApLuA0cAThTa46667RmNjsdWbdc7MmTPfi4i+la7X/drKaebMmSuB6RHxqR/lZQsWHbhE0jigGbgyIv4KDAD+nLNMSyr7OE23LS+osbGR5ubm0rTYrA1Jb1WjXvdrKydJ8/IFCqj8Ce6bgX2AYcAy4EepPN95iOigPC9JF0pqltS8YsWKLW2rmZklFQ0WEfFuRGyIiI3ArcCI9FILsEfOogOBpal8YJ7y9rY/KSKaIqKpb9+KHyEwM+u2KhosJPXLmT0FaL1SaipwhqTekvYmO5H9QkQsA1ZJGpmughoHPFzJNpuZWRnPWUi6FzgC2FVSC/Bd4AhJw8gOJS0CLgKIiNckTQFeB9YDF0fEhrSpb5JdWbU92Yntgie3rbY1jn+sS+stmnh8iVtiVt8q+V0q59VQZ+Yp/lkHy18DXJOnvBnYr4RNMzOzTvId3GZmVpCDhZmZFeRgYWZmBTlYmJlZQQ4WZl0k6UVJj6bpnSVNkzQvPX82ZzknybS652Bh1jW7A2/kzI8HnoyIQcCTad5JMq3bcLAw66SWlhaAvwNuyyk+GbgzTd9JlvCytXxyRKyLiIVAa5LMfqQkmRERwF0565jVHAcLs066/PLLIUtFszGnePeUcYD0vFsqHwAsyVmuNRnmALqYJNOsGhwszDrh0UcfZbfddgNYXeQqW5wk0wkyrRY4WJh1wnPPPcfUqVMB9gcmA0dK+iXwbmvus/S8PK2yxUkynSDTaoGDhVknXHvtta3nLF4lO3H9VEScTZYM85y02DlsTnjpJJnWLVRj8COz7mgiMEXS+cBiYAw4SaZ1Hw4WZl0UEX8A/pCm3weOamc5J8m0uufDUGZmVpCDhZmZFeRgYWZmBTlYmJlZQQ4WZmZWkIOFmZkV5GBhZmYFOViYmVlBDhZmZlaQ7+C2utE4/rEurbdo4vElbonZ1qeoPQtJTklg3dLs2bOr3QSzulDsYah/k/SCpP8h6TNlbZFZBX3jG99gxIgR3HTTTXzwwQfVbo5ZzSoqWETEocB/J8vL3yzpHklHl7VlZhXwpz/9ibvvvpslS5bQ1NTEWWedxbRp06rdLLOaU/QJ7oiYB/wz8G3gcOAnkuZI+lq5GmdWCYMGDeLqq6/muuuu45lnnuHSSy9l8ODBPPjgg9VumlnNKOoEt6ShwN8DxwPTgBMjYpak/sB04FPfKkm3AycAyyNiv1S2M3Af0AgsAk6LiL+m164Czgc2AJdGxG9T+UFszvn/OHBZGuDeakBXTzrXildeeYU77riDxx57jKOPPppHHnmE4cOHs3TpUg455BC+9rVP/xZau3YtwH+R9DLZd+hXEfFd92/rzords/gpMAs4ICIujohZABGxlGxvI5+fA8e0KRsPPBkRg4An0zyShpCNOvaFtM5NknqkdW4GLiQbYWxQnm2addkll1zC8OHDefnll7nxxhsZPnw4AP379+fqq6/Ou07v3r0B5kbEAcAw4BhJI3H/tm6s2GBxHHBPRKwBkLSNpB0AIuIX+VaIiGeBv7QpPhm4M03fCYzOKZ8cEesiYiEwHxiRxjJuiIjp6dfWXTnrmG2xxx9/nLPOOovtt98egI0bN7J69WoAxo4dm3edbBRUNqbZbdMjcP+2bqzYYPF7st3kVjukss7aPY09THreLZUPAJbkLNeSygak6bblZiUxatQo1qxZs2l+9erVjBo1qqh1Jb0ELAemRcTzuH9bN1ZssNguIv7WOpOmdyhhO5SnLDooz78R6UJJzZKaV6xYUbLGWfe1du1adtxxx03zO+6446Y9i0IiYhgwkGwvoaN7kbaof7tfWy0oNlh8KGl460w6Kbemg+Xb827a9SY9L0/lLWSX5bYaCCxN5QPzlOcVEZMioikimvr27duF5tnWpk+fPsyaNWvT/MyZMzcdkipGRHxANg73MZSpf7tfWy0oNt3H5cD9klo7cj/g9C7UNxU4B5iYnh/OKb9H0vVAf7ITfS9ExAZJq9LJw+eBccD/60K9ZnndcMMNjBkzhv79+wOwbNky7rvvvg7XSb/uewBI2h4YBVyH+7d1Y0UFi4iYIWkwsC/ZrvOciPi4o3Uk3QscAewqqQX4LtmXaIqk84HFwJi0/dckTQFeB9YDF0fEhrSpb7L50sIn0sOsJA4++GDmzJnD3LlziQgGDx7Mtttu2+E6y5YtA9hX0itke+dTIuJRSdNx/7ZuqjOJBA8mu368J3CgJCLirvYWjogz23npqHaWvwa4Jk95M+DcVFY2M2bMYNGiRaxfv54XX3wRgHHjxrW7/NChQwFej4im3PKIeB/3b+umir0p7xfAPsBLZDcVQXYirt1gYVYPxo4dy5tvvsmwYcPo0SO79UFSh8HCbGtU7J5FEzDEd5Zad9Pc3Mzrr7/eeu+EmbWj2KuhZgP/qZwNMauG/fbbj3feeafazTCrecXuWewKvC7pBWBda2FEnFSWVplVyHvvvceQIUMYMWJEaxoPAKZOnVrFVpnVnmKDxYRyNsKsWiZMmFDtJpjVhWIvnX1G0l7AoIj4fcoL1aPQema17vDDD+ett95i3rx5jBo1itWrV7Nhw4bCK5ptZYodVvUC4FfALaloAPDrcjXKrFJuvfVWvv71r3PRRRcB8PbbbzN6tHP5mbVV7Anui4EvAith00BIu3W4hlkduPHGG3nuuedoaGgAsoGQli9fXmAts61PscFiXUR81DojqScdJPQzqxe9e/emV69em+bXr1/vy2jN8ig2WDwj6Z+A7dPY2/cDj5SvWWaVcfjhh/PDH/6QNWvWMG3aNMaMGcOJJ55Y7WaZ1Zxig8V4YAXwKnAR2fCP7Y2QZ1Y3Jk6cSN++fdl///255ZZbOO6449odIc9sa1bs1VAbgVvTw6zb2Gabbbjgggu44IILqt0Us5pWbG6oheQ5RxERnyt5i8wqaO+99857jmLBggVVaI1Z7epMbqhW25GlXt659M0xq6zm5uZN02vXruX+++/nL39pO3S8mRV1ziIi3s95vB0RNwBHlrltZmW3yy67bHoMGDCAyy+/nKeeeqrazTKrOcUehhqeM7sN2Z7GTmVpkVkF5Q6punHjRpqbm1m1alWH6yxZsgTg85LeADYCkyLiXyXtDNxHNu7LIuC0iPgrgKSrgPPJUvxfGhG/TeUHsXnwo8eBy5zd2WpRsYehfpQzvZ70RSh5a8wq7Morr9w03bNnTxobG5kyZUqH6/Ts2ROgJSKGSNoJmClpGnAu8GRETJQ0nuwqwm9LGgKcAXyBbFjV30v6fBot72bgQuDPZMHiGDxantWgYq+G+nK5G2JWDU8//XSn1+nXrx/AaoCIWJX2MAYAJ5MNJQxwJ/AH4NupfHJErAMWSpoPjJC0CGiIiOkAku4CRuNgYTWo2MNQV3T0ekRcX5rmmFXW9dd33HWvuKLDro+kRuBA4Hlg94hYBhARyyS1psQZQLbn0KollX2cptuWm9WczlwNdTDQmuT/ROBZYEk5GmVWKc3NzcyYMYOTTsqGZnnkkUc47LDD2GOPPQquK2lH4AHg8ohY2UGakHwvRAflbeu5kOxQFXvuuWfBdpmVQ2cGPxoeEasAJE0A7o+IfyhXw8wq4b333mPWrFnstFN2vcaECRMYM2YMt912W6FVRRYo7o6IB1PZu5L6pb2KfkBrRsIWIDf6DASWpvKBeco/ISImAZMAmpqafPLbqqLYdB97Ah/lzH9EdsWHWV1bvHjxJxIJ9urVi0WLFnW4TrpYaS/gjTaHYKcC56Tpc4CHc8rPkNRb0t7AIOCFdMhqlaSRynZLxuWsY1ZTit2z+AXwgqSHyHaTTwHuKlurzCpk7NixjBgxglNOOQVJPPTQQ4wbN67DdZ577jmAXYAjJb2Uiv8JmAhMkXQ+sJjs5lUi4jVJU4DXya4mvDhdCQXwTTZfOvsEPrltNarYq6GukfQE8KVU9PcR8WL5mmVWGd/5znc49thj+eMf/wjAHXfcwYEHHtjhOoceeijAzIhoyvPyUfnWiYhrgGvylDcD+3Wy2WYVV+xhKIAdgJUR8a9AS9qdNqt7q1evpqGhgcsuu4yBAweycOHCajfJrOYUO6zqd8muF78qFW0L/LJcjTKrlO9973tcd911XHvttQB8/PHHnH322VVulVntKXbP4hTgJOBDgIhYyhak+5C0SNKrkl6S1JzKdpY0TdK89PzZnOWvkjRf0lxJX+1qvWZtPfTQQ0ydOpU+ffoA0L9//4LpPsy2RsUGi49SvpoAkNSnBHV/OSKG5Rz3HU+WKmEQ8GSap02qhGOAmyT1KEH9ZvTq1QtJm9KUf/jhh1VukVltKjZYTJF0C/AZSRcAv6f0AyGdTJYigfQ8Oqd8ckSsi4iFwHxgRInrtq3UaaedxkUXXcQHH3zArbfeyqhRozwQklkeBa+GStd/3wcMBlYC+wL/JyKmbUG9AfxOUgC3pJuOOpsqwWyLRASnn346c+bMoaGhgblz5/L973+fo48+utpNM6s5BYNFRISkX0fEQcCWBIhcX4yIpSkgTJM0p4Nli0qJAE6LYJ0jidGjRzNz5kwHCLMCij0M9WdJB5eq0nSCnIhYDjxEdljp3ZQigSJTJeTb7qSIaIqIpr59+5aqudaNjRw5khkzZlS7GWY1r9hg8WWygPGmpFfSlUyvdKVCSX3SGACtJ8q/Asymk6kSulK3WVtPP/00I0eOZJ999mHo0KHsv//+DB06tNrNMqs5HR6GkrRnRCwGji1hnbsDD6WrT3oC90TEbyTNoPOpEsy6ZPHixey555488YSza5gVo9A5i1+TZZt9S9IDEXHqllYYEQuAA/KUv08nUyWYddXo0aOZNWsWe+21F6eeeioPPPBAtZtkVtMKHYbKPbn8uXI2xKyScoe5XrBgQRVbYlYfCu1ZRDvT1s00jn+s2k2oqNyBijoYtMjMkkLB4gBJK8n2MLZP06T5iIiGsrbOrExefvllGhoaiAjWrFlDQ0PWlSMCSaxcubLAFsy2Lh0Gi4hwWg3rljZs6Po1Eueddx5kP6RmR8R+kOU2I7t5tRFYBJwWEX9Nr10FnA9sAC6NiN+m8oPYPJbF48BlkXt8zKyGdCZFuZkB5557LsC8NsVdyW12M9lNpIPS45hyt92sqxwszDrpsMMOg+wy7lydym2WbjxtiIjpaW/irpx1zGqOg4VZaXwitxmQm9tsSc5yrbnNBqTptuVmNcnBwqy82stt1qmcZ5KaJTWvWLGipI0zK5aDhVlpdDa3WUuablv+Kc55ZrXAwcKsNDqV2ywdqlolaWQaBmBczjpmNadginIz+6QzzzwTsvFdJKkF+C4wkc7nNvsmmy+dfSI9zGqSg4VZJ917771Mnjz5lZwhgVt1KrdZRDQD+5WhiWYl52BhZlZl9ZBux+cszMysIAcLMzMryMHCzMwKcrAwM7OCHCzMzKwgBwszMyvIl852M/VwCZ6Z1R/vWZiZWUEOFmZmVpCDhZmZFeRgYWZmBfkEt3V7XT3pv2ji8SVuiVn9crCoUb6qycxqiYOFmVmJdOcfeXVzzkLSMZLmSpovaXy122NWKu7bVg/qYs9CUg/gRuBosrGLZ0iaGhGvV7dlhXXnXxq25eq5b9vWpS6CBTACmB8RCwAkTQZOJhuq0qyeuW+XkX+slU69BIsBwJKc+Rbgv3Z1Y+5AVkNK2re7M39vq6tegoXylMWnFpIuBC5Ms3+TNLdM7dkVeK9M23b9NVK/ruuw/r1KVU2esk/07SL7dbU/k0rx+yyBDvr2IEm/iYhj2r5QL8GiBdgjZ34gsLTtQhExCZhU7sZIao6IpnLX4/pruv7GEm2uYN8upl9X+29SKX6f1VMvV0PNIIt4e0vqBZwBTK1ym8xKwX3b6kJd7FlExHpJlwC/BXoAt0fEa1VultkWc9+2elEXwQIgIh4HHq92O5KyH+py/VtP/SXq29X+m1SK32eVKOJT54nNzMw+oV7OWZiZWRU5WBRJ0h6Snpb0hqTXJF1WpXb0kPSipEerVP9nJP1K0pz0tzikwvV/K/39Z0u6V9J2Za7vdknLJc3OKdtZ0jRJ89LzZytU7wGSpkt6VdIjkhpyXrsqpQuZK+mrOeUHpeXnS/qJpHyX6lZVZ96rpEZJayS9lB7/lrNOzb7X9v5/dNSXau4zjQg/ingA/YDhaXon4N+BIVVoxxXAPcCjVfo73An8Q5ruBXymgnUPABYC26f5KcC5Za7zMGA4MDun7F+A8Wl6PHBdheqdARyeps8DfpCmhwAvA72BvYE3gR7ptReAQ8ju53gCOLYa/aaE77Uxd7k226nZ99re/4/2+lItfqbesyhSRCyLiFlpehXwBtk/r4qRNBA4HritkvXm1N9A9sX+GUBEfBQRH1S4GT2B7SX1BHYgz/02pRQRzwJ/aVN8MlnQJD2PrlC9+wLPpulpwKk57ZkcEesiYiEwHxghqR/QEBHTI/svc1c52rqlOvle86r199rB/4/2+lLNfaYOFl0gqRE4EHi+wlXfAPwvYGOF6231OWAFcEc6FHabpD6Vqjwi3gb+L7AYWAb8R0T8rlL159g9IpalNi0DdqtQvbOBk9L0GDbfzJcvZciA9GjJU14P2nuvAHun/veMpC+lsrp5r23+f7TXl2ruM3Ww6CRJOwIPAJdHxMoK1nsCsDwiZlaqzjx6kh0uuDkiDgQ+JNt1roh0PPdkst3y/kAfSWdXqv4acB5wsaSZZIcyPkrl7aUMKSpNTo1q770uA/ZM/e8K4J60x1sX77UT/z9q7jN1sOgESduSfdB3R8SDFa7+i8BJkhYBk4EjJf2ywm1oAVoionWP6ldkwaNSRgELI2JFRHwMPAj8twrW3+rddDig9fDH8kpUGhFzIuIrEXEQcC/ZcWxoP2VIS5puW17z2nuv6bDM+2l6Zir/PHXwXtv5/9FeX6q5z9TBokjpioOfAW9ExPWVrj8iroqIgZHlJDoDeCoiKvqrOiLeAZZI2jcVHUVlU2kvBkZK2iF9HkeRHfuttKnAOWn6HODhSlQqabf0vA3wz0DrlUBTgTMk9Za0NzAIeCEd1lglaWT6e42rVFu3VHvvVVJfZWOAIOlzZO91Qa2/1w7+f7TXl2rvM632VQL18gAOJdvdewV4KT2Oq1JbjqB6V0MNA5rT3+HXwGcrXP/3gDlkx7R/AfQuc333kh36+JjsV935wC7Ak8C89Lxzheq9jOwqmn8HJpJuqk3Lf4fsV/Zccq6OAZrS3+pN4Ke569TKozPvlexE92tkVwrNAk6sh/fa3v+PjvpSrX2mvoPbzMwK8mEoMzMryMHCzMwKcrAwM7OCHCzMzKwgBwszMyvIwaJGSfpbem6UFJJ+kPParpI+lvTTND9B0tspC+c8SQ9KGpKz/CJJu5aoXY2SzsqZb5L0k1Js27o/9+v65WBRHxYAJ+TMjyG71jzXjyNiWEQMAu4DnpLUtyuVpSR97WkENn2pIqI5Ii7tSj221XO/riMOFvVhDfCGpKY0fzpZeu68IuI+4HfkdH7gf0p6IT3+c9t10q+4SZJ+B9yVfmn9UdKs9GhNqzER+FL6tfctSUcoja2RtnG7pD9IWiDp0pzt/29lY2BMUzYOxT9u0V/EugP36zpSN2NwG5PJbv9/B9hAlg+mfwfLzwIG58yvjIgRksaRZa89Ic86BwGHRsQaSTsAR0fEWkmDyO6ybSJLHPiPEXECgKQj2mxjMPBlsuRvcyXdDBxAduftgWR9bhZQzYSIVjvcr+uEg0X9+A3wA+Bdst3xQtpmp7w35/nH7awzNSLWpOltgZ9KGkb2Jf58ke18LCLWAeskLQd2J0t18HDrtiU9UuS2rPtzv64TPgxVJyLiI7JfLVeSZa4s5EA+mWQv2pnO9WHO9LfIvsAHkP3y6lVkU9flTG8g+0FSM8NbWm1xv64fDhb15UfAtyOlaG6PpFOBr7D5Vxdkx4Nbn6cXUdffAcsiYiMwFuiRyleR7Yp3xp+AEyVtpyyf//GdXN+6N/frOuDDUHUkIl7j01eLtPqWsoGA+pBlpDwyIlbkvN5b0vNkPxDOLKK6m4AHJI0Bnmbzr7NXgPWSXgZ+DrxYRLtnSJpKlin0LbKstf9RRBtsK+B+XR+cddYqQtKOEfG3dILxWeDCSGMSm9Wrralfe8/CKmVSuqFqO+DO7vqFsq3OVtOvvWdhZmYF+QS3mZkV5GBhZmYFOViYmVlBDhZmZlaQg4WZmRXkYGFmZgX9f4PHho+DzTvOAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(6, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"\n",
"# on my SECOND set of axis I want to do a distribution of \"Year\" column\n",
"#ax[0].hist(movies['Years']) # This doesn't work because \"Years\" is NOT \"Year\"\n",
"ax[1].hist(movies['Year']) # I've updated the column that is being histogrammed\n",
"ax[1].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[1].set_ylabel('Frequency')\n",
"\n",
"plt.show()\n",
"# layout is a little smooshed AND my x-axis label on the 2nd set of axis is wrong"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAACcCAYAAACORIccAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAZy0lEQVR4nO3de5hU1bnn8e9PEFS0j1HR4aK2cYgOUQREBidGjWLiXYzB2wh69KjJ6KjRMyOenBkx0YjzTIwnE/V4iUYTFTFqBC8xeIlGHyI0qIgKBwSEFhQ08YByUeCdP/ZqKNvqruqm69b8Ps9TT+29au+9VnWtrrf27V2KCMzMzFqzVaUbYGZm1c/BwszMCnKwMDOzghwszMysIAcLMzMryMHCzMwKKlmwkHSXpGWSZuWUjZX0nqTX0uPYnNeukjRP0hxJ38kpP1DSG+m1X0hSqdpsZmb5lXLP4tfA0XnKfx4RA9PjSQBJ/YHTga+ndW6R1CUtfytwAdAvPfJt08zMSqhrqTYcES9Kqi9y8ZOA8RGxFlggaR4wVNJCoC4ipgBIuhcYATxVaIO77LJL1NcXW71Z20yfPv3DiOhZ7nrdr62Upk+fvgKYEhFf+lFesmDRiosljQYagCsi4m9AH+AvOcs0prLP03Tz8oLq6+tpaGjomBabNSPp3UrU635tpSRpbr5AAeU/wX0rsDcwEFgK/CyV5zsPEa2U5yXpAkkNkhqWL1++uW01M7OkrMEiIj6IiPURsQG4AxiaXmoEds9ZtC+wJJX3zVPe0vZvj4ghETGkZ8+yHyEwM+u0yhosJPXKmT0ZaLpSaiJwuqTukvYiO5E9NSKWAislDUtXQY0GHitnm83MrITnLCQ9ABwO7CKpEbgaOFzSQLJDSQuBCwEi4k1JE4C3gHXARRGxPm3qB2RXVm1LdmK74Mltq271Y55o13oLxx3XwS0xq23l/F8q5dVQZ+Qp/lUry18HXJenvAHYrwObZmZmbeQ7uM3MrCAHCzMzK8jBwszMCnKwMDOzghwszNpJ0quSHk/TO0maLGluev5KznJOkmk1z8HCrH12A97OmR8DPBsR/YBn07yTZFqn4WBh1kaNjY0AfwfcmVN8EnBPmr6HLOFlU/n4iFgbEQuApiSZvUhJMiMigHtz1jGrOg4WZm102WWXQZaKZkNO8W4p4wDpeddU3gdYnLNcUzLMPrQzSaZZJThYmLXB448/zq677gqwqshVNjtJphNkWjVwsDBrg5dffpmJEycC7A+MB46Q9Fvgg6bcZ+l5WVpls5NkOkGmVQMHC7M2uP7665vOWbxBduL6uYg4iywZ5tlpsbPZlPDSSTKtU6jE4EdmndE4YIKk84BFwEhwkkzrPBwszNopIv4E/ClNfwQc2cJyTpJpNc+HoczMrCAHCzMzK8jBwszMCnKwMDOzghwszMysIAcLMzMryMHCzMwKcrAwM7OCHCzMzKwg38FtNaN+zBPtWm/huOM6uCVmW56i9iwkOSWBdUqzZs2qdBPMakKxh6H+VdJUSf9N0o4lbZFZGX3/+99n6NCh3HLLLXz88ceVbo5Z1SoqWETEIcB/JcvL3yDpfklHlbRlZmXw0ksvcd9997F48WKGDBnCmWeeyeTJkyvdLLOqU/QJ7oiYC/wzcCVwGPALSbMlfbdUjTMrh379+nHttddyww038MILL3DJJZew77778sgjj1S6aWZVo6gT3JIGAH8PHAdMBk6IiBmSegNTgC/9V0m6CzgeWBYR+6WynYAHgXpgIXBqRPwtvXYVcB6wHrgkIp5O5QeyKef/k8ClaYB7qwLtPelcLWbOnMndd9/NE088wVFHHcWkSZMYPHgwS5Ys4eCDD+a73/3yb6E1a9YA/CdJr5P9D/0uIq52/7bOrNg9i18CM4ADIuKiiJgBEBFLyPY28vk1cHSzsjHAsxHRD3g2zSOpP9moY19P69wiqUta51bgArIRxvrl2aZZu1188cUMHjyY119/nZtvvpnBgwcD0Lt3b6699tq863Tv3h1gTkQcAAwEjpY0DPdv68SKDRbHAvdHxGoASVtJ2g4gIn6Tb4WIeBH4a7Pik4B70vQ9wIic8vERsTYiFgDzgKFpLOO6iJiSfm3dm7OO2WZ78sknOfPMM9l2220B2LBhA6tWrQJg1KhRedfJRkFlQ5rdOj0C92/rxIoNFs+Q7SY32S6VtdVuaexh0vOuqbwPsDhnucZU1idNNy836xDDhw9n9erVG+dXrVrF8OHDi1pX0mvAMmByRLyC+7d1YsUGi20i4pOmmTS9XQe2Q3nKopXy/BuRLpDUIKlh+fLlHdY467zWrFnD9ttvv3F+++2337hnUUhEDAT6ku0ltHYv0mb1b/drqwbFBotPJQ1umkkn5Va3snxLPki73qTnZam8keyy3CZ9gSWpvG+e8rwi4vaIGBIRQ3r27NmO5tmWpkePHsyYMWPj/PTp0zcekipGRHxMNg730ZSof7tfWzUoNt3HZcBDkpo6ci/gtHbUNxE4GxiXnh/LKb9f0o1Ab7ITfVMjYr2klenk4SvAaOD/taNes7xuuukmRo4cSe/evQFYunQpDz74YKvrpF/3XQAkbQsMB27A/ds6saKCRURMk7QvsA/ZrvPsiPi8tXUkPQAcDuwiqRG4muyfaIKk84BFwMi0/TclTQDeAtYBF0XE+rSpH7Dp0sKn0sOsQxx00EHMnj2bOXPmEBHsu+++bL311q2us3TpUoB9JM0k2zufEBGPS5qC+7d1Um1JJHgQ2fXjXYFBkoiIe1taOCLOaOGlI1tY/jrgujzlDYBzU1nJTJs2jYULF7Ju3TpeffVVAEaPHt3i8gMGDAB4KyKG5JZHxEe4f1snVexNeb8B9gZeI7upCLITcS0GC7NaMGrUKN555x0GDhxIly7ZrQ+SWg0WZluiYvcshgD9fWepdTYNDQ289dZbTfdOmFkLir0aahbwH0rZELNK2G+//Xj//fcr3QyzqlfsnsUuwFuSpgJrmwoj4sSStMqsTD788EP69+/P0KFDm9J4ADBx4sQKtsqs+hQbLMaWshFmlTJ27NhKN8GsJhR76ewLkvYE+kXEMykvVJdC65lVu8MOO4x3332XuXPnMnz4cFatWsX69esLr2i2hSl2WNXzgd8Bt6WiPsDvS9Uos3K54447+N73vseFF14IwHvvvceIEc7lZ9ZcsSe4LwK+AayAjQMh7drqGmY14Oabb+bll1+mrq4OyAZCWrZsWYG1zLY8xQaLtRHxWdOMpK60ktDPrFZ0796dbt26bZxft26dL6M1y6PYYPGCpH8Ctk1jbz8ETCpds8zK47DDDuOnP/0pq1evZvLkyYwcOZITTjih0s0yqzrFBosxwHLgDeBCsuEfWxohz6xmjBs3jp49e7L//vtz2223ceyxx7Y4Qp7ZlqzYq6E2AHekh1mnsdVWW3H++edz/vnnV7opZlWt2NxQC8hzjiIivtrhLTIro7322ivvOYr58+dXoDVm1astuaGabEOWenmnjm+OWXk1NDRsnF6zZg0PPfQQf/1r86HjzayocxYR8VHO472IuAk4osRtMyu5nXfeeeOjT58+XHbZZTz33HOVbpZZ1Sn2MNTgnNmtyPY0dihJi8zKKHdI1Q0bNtDQ0MDKlStbXWfx4sUAX5P0NrABuD0i/kXSTsCDZOO+LAROjYi/AUi6CjiPLMX/JRHxdCo/kE2DHz0JXOrszlaNij0M9bOc6XWkf4QOb41ZmV1xxRUbp7t27Up9fT0TJkxodZ2uXbsCNEZEf0k7ANMlTQbOAZ6NiHGSxpBdRXilpP7A6cDXyYZVfUbS19JoebcCFwB/IQsWR+PR8qwKFXs11LdK3RCzSnj++efbvE6vXr0AVgFExMq0h9EHOIlsKGGAe4A/AVem8vERsRZYIGkeMFTSQqAuIqYASLoXGIGDhVWhYg9DXd7a6xFxY8c0x6y8bryx9a57+eWtdn0k1QODgFeA3SJiKUBELJXUlBKnD9meQ5PGVPZ5mm5eblZ12nI11EFAU5L/E4AXgcWlaJRZuTQ0NDBt2jROPDEbmmXSpEkceuih7L777gXXlbQ98DBwWUSsaCVNSL4XopXy5vVcQHaoij322KNgu8xKoS2DHw2OiJUAksYCD0XEP5SqYWbl8OGHHzJjxgx22CG7XmPs2LGMHDmSO++8s9CqIgsU90XEI6nsA0m90l5FL6ApI2EjkBt9+gJLUnnfPOVfEBG3A7cDDBkyxCe/rSKKTfexB/BZzvxnZFd8mNW0RYsWfSGRYLdu3Vi4cGGr66SLlfYE3m52CHYicHaaPht4LKf8dEndJe0F9AOmpkNWKyUNU7ZbMjpnHbOqUuyexW+AqZIeJdtNPhm4t2StMiuTUaNGMXToUE4++WQk8eijjzJ69OhW13n55ZcBdgaOkPRaKv4nYBwwQdJ5wCKym1eJiDclTQDeIrua8KJ0JRTAD9h06exT+OS2Valir4a6TtJTwDdT0d9HxKula5ZZefzoRz/imGOO4c9//jMAd999N4MGDWp1nUMOOQRgekQMyfPykfnWiYjrgOvylDcA+7Wx2WZlV+xhKIDtgBUR8S9AY9qdNqt5q1atoq6ujksvvZS+ffuyYMGCSjfJrOoUO6zq1WTXi1+VirYGfluqRpmVyzXXXMMNN9zA9ddfD8Dnn3/OWWedVeFWmVWfYvcsTgZOBD4FiIglbEa6D0kLJb0h6TVJDalsJ0mTJc1Nz1/JWf4qSfMkzZH0nfbWa9bco48+ysSJE+nRowcAvXv3Lpjuw2xLVGyw+CzlqwkAST06oO5vRcTAnOO+Y8hSJfQDnk3zNEuVcDRwi6QuHVC/Gd26dUPSxjTln376aYVbZFadig0WEyTdBuwo6XzgGTp+IKSTyFIkkJ5H5JSPj4i1EbEAmAcM7eC6bQt16qmncuGFF/Lxxx9zxx13MHz4cA+EZJZHwauh0vXfDwL7AiuAfYD/HRGTN6PeAP4oKYDb0k1HbU2VYLZZIoLTTjuN2bNnU1dXx5w5c/jxj3/MUUcdVemmmVWdgsEiIkLS7yPiQGBzAkSub0TEkhQQJkua3cqyRaVEAKdFsLaRxIgRI5g+fboDhFkBxR6G+oukgzqq0nSCnIhYBjxKdljpg5QigSJTJeTb7u0RMSQihvTs2bOjmmud2LBhw5g2bVqlm2FW9YoNFt8iCxjvSJqZrmSa2Z4KJfVIYwA0nSj/NjCLNqZKaE/dZs09//zzDBs2jL333psBAwaw//77M2DAgEo3y6zqtHoYStIeEbEIOKYD69wNeDRdfdIVuD8i/iBpGm1PlWDWLosWLWKPPfbgqaecXcOsGIXOWfyeLNvsu5IejohTNrfCiJgPHJCn/CPamCrBrL1GjBjBjBkz2HPPPTnllFN4+OGHK90ks6pW6DBU7snlr5ayIWbllDvM9fz58yvYErPaUGjPIlqYtk6mfswTlW5CWeUOVNTKoEVmlhQKFgdIWkG2h7FtmibNR0TUlbR1ZiXy+uuvU1dXR0SwevVq6uqyrhwRSGLFihUFtmC2ZWk1WESE02pYp7R+ffuvkTj33HMh+yE1KyL2gyy3GdnNq/XAQuDUiPhbeu0q4DxgPXBJRDydyg9k01gWTwKXRu7xMbMq0pYU5WYGnHPOOQBzmxW3J7fZrWQ3kfZLj6NL3Xaz9nKwMGujQw89FLLLuHO1KbdZuvG0LiKmpL2Je3PWMas6DhZmHeMLuc2A3Nxmi3OWa8pt1idNNy83q0oOFmal1VJuszblPJPUIKlh+fLlHdo4s2I5WJh1jLbmNmtM083Lv8Q5z6waOFiYdYw25TZLh6pWShqWhgEYnbOOWdUpmKLczL7ojDPOgGx8F0lqBK4GxtH23GY/YNOls0+lh1lVcrAwa6MHHniA8ePHz8wZErhJm3KbRUQDsF8JmmjW4RwszMwqrBbS7fichZmZFeRgYWZmBTlYmJlZQQ4WZmZWkIOFmZkV5GBhZmYF+dLZTqYWLsEzs9rjPQszMyvIwcLMzApysDAzs4IcLMzMrCCf4LZOr70n/ReOO66DW2JWuxwsqpSvajKzauJgYWbWQTrzj7yaOWch6WhJcyTNkzSm0u0x6yju21YLamLPQlIX4GbgKLKxi6dJmhgRb1W2ZYV15l8atvlquW/blqUmggUwFJgXEfMBJI0HTiIbqtKslrlvl5B/rHWcWgkWfYDFOfONwH9u78bcgayKdGjf7sz8f1tZtRIslKcsvrSQdAFwQZr9RNKcErVnF+DDEm3b9VdJ/bqh1fr37Khq8pR9oW8X2a8r/ZmUi99nB2ilb/eT9IeIOLr5C7USLBqB3XPm+wJLmi8UEbcDt5e6MZIaImJIqetx/VVdf30Hba5g3y6mX1f6b1Iufp+VUytXQ00ji3h7SeoGnA5MrHCbzDqC+7bVhJrYs4iIdZIuBp4GugB3RcSbFW6W2WZz37ZaURPBAiAingSerHQ7kpIf6nL9W079HdS3K/03KRe/zwpRxJfOE5uZmX1BrZyzMDOzCnKwKJKk3SU9L+ltSW9KurRC7egi6VVJj1eo/h0l/U7S7PS3OLjM9f8w/f1nSXpA0jYlru8uScskzcop20nSZElz0/NXylTvAZKmSHpD0iRJdTmvXZXShcyR9J2c8gPT8vMk/UJSvkt1K6ot71VSvaTVkl5Lj3/NWadq32tL3x+t9aWq+0wjwo8iHkAvYHCa3gH4N6B/BdpxOXA/8HiF/g73AP+QprsBO5ax7j7AAmDbND8BOKfEdR4KDAZm5ZT9H2BMmh4D3FCmeqcBh6Xpc4GfpOn+wOtAd2Av4B2gS3ptKnAw2f0cTwHHVKLfdOB7rc9drtl2qva9tvT90VJfqsbP1HsWRYqIpRExI02vBN4m+/IqG0l9geOAO8tZb079dWT/2L8CiIjPIuLjMjejK7CtpK7AduS536YjRcSLwF+bFZ9EFjRJzyPKVO8+wItpejJwSk57xkfE2ohYAMwDhkrqBdRFxJTIvmXuLUVbN1cb32te1f5eW/n+aKkvVd1n6mDRDpLqgUHAK2Wu+ibgfwIbylxvk68Cy4G706GwOyX1KFflEfEe8H+BRcBS4N8j4o/lqj/HbhGxNLVpKbBrmeqdBZyYpkey6Wa+fClD+qRHY57yWtDSewXYK/W/FyR9M5XVzHtt9v3RUl+qus/UwaKNJG0PPAxcFhEryljv8cCyiJherjrz6Ep2uODWiBgEfEq261wW6XjuSWS75b2BHpLOKlf9VeBc4CJJ08kOZXyWyltKGVJUmpwq1dJ7XQrskfrf5cD9aY+3Jt5rG74/qu4zdbBoA0lbk33Q90XEI2Wu/hvAiZIWAuOBIyT9tsxtaAQaI6Jpj+p3ZMGjXIYDCyJieUR8DjwC/Jcy1t/kg3Q4oOnwx7JyVBoRsyPi2xFxIPAA2XFsaDllSGOabl5e9Vp6r+mwzEdpenoq/xo18F5b+P5oqS9V3WfqYFGkdMXBr4C3I+LGctcfEVdFRN/IchKdDjwXEWX9VR0R7wOLJe2Tio6kvKm0FwHDJG2XPo8jyY79lttE4Ow0fTbwWDkqlbRret4K+Geg6UqgicDpkrpL2gvoB0xNhzVWShqW/l6jy9XWzdXSe5XUU9kYIEj6Ktl7nV/t77WV74+W+lL1faaVvkqgVh7AIWS7ezOB19Lj2Aq15XAqdzXUQKAh/R1+D3ylzPVfA8wmO6b9G6B7iet7gOzQx+dkv+rOA3YGngXmpuedylTvpWRX0fwbMI50U21a/kdkv7LnkHN1DDAk/a3eAX6Zu061PNryXslOdL9JdqXQDOCEWnivLX1/tNaXqu0z9R3cZmZWkA9DmZlZQQ4WZmZWkIOFmZkV5GBhZmYFOViYmVlBDhZVStIn6bleUkj6Sc5ru0j6XNIv0/xYSe+lLJxzJT0iqX/O8gsl7dJB7aqXdGbO/BBJv+iIbZsVS5mXJB2TU3aqpD9Usl2dmYNFbZgPHJ8zP5LsWvNcP4+IgRHRD3gQeE5Sz/ZUlpL0taQe2BgsIqIhIi5pTz1m7RXZNf/fB26UtE3KUXYdcFF7ttd0o5+1zMGiNqwG3pY0JM2fRpaeO6+IeBD4Izlf6sD/kDQ1Pf5j83XS3sntkv4I3Jv2IP4saUZ6NKXVGAd8M+3F/FDS4Upja6Rt3CXpT5LmS7okZ/v/S9kYGJOVjUPxj5v1F7EtXkTMAiYBVwJXA78FfiRpWko0eBJs3Bv+Ul9Offd5SfcDb1TqfdSKmhmD2xhPdvv/+8B6snwwvVtZfgawb878iogYKmk0Wfba4/OscyBwSESslrQdcFRErJHUj+wu2yFkiQP/MSKOh+wfrtk29gW+RZb8bY6kW4EDyO68HUTW52YAlUyIaJ3HNWT96TPgcbI0OOdK2hGYKukZsnxL+foywFBgv8jSgFsrHCxqxx+AnwAfkB1mKqR5dsoHcp5/3sI6EyNidZreGvilpIFkwelrRbbziYhYC6yVtAzYjSzVwWNN25Y0qchtmbUqIj6V9CDwCXAqcELOXus2wB5kP6xa6stTHSiK42BRIyLis5Su+Qrg68AJBVYZRJbDaeMmWpjO9WnO9A/JAtMBZIcr1xTZ1LU50+vJ+ljVDG9pndKG9BBwSkTMyX1R0lha7su5fd5a4XMWteVnwJWRUjS3RNIpwLfZtDcB2XmOpucpRdT1d8DSiNgAjAKaTgCuJDvE1BYvkf3i2ybl8z+ujeubFeNp4L+nbKxIGpTKW+rL1gbes6ghEfEmX74KqskPlQ0E1IMsI+UREbE85/Xukl4h+4FwRhHV3QI8LGkk8DybfoHNBNZJeh34NfBqEe2eJmkiWabQd8n2eP69iDaYtcVPyM7HzUwBYyHZubmW+rK1gbPOWllI2j4iPkknzl8ELog0JrGZVT/vWVi53J5uFNwGuMeBwqy2eM/CzMwK8gluMzMryMHCzMwKcrAwM7OCHCzMzKwgBwszMyvIwcLMzAr6/yg0JTKGB7e3AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(6, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"\n",
"# on my SECOND set of axis I want to do a distribution of \"Year\" column\n",
"#ax[0].hist(movies['Years']) # This doesn't work because \"Years\" is NOT \"Year\"\n",
"ax[1].hist(movies['Year']) # I've updated the column that is being histogrammed\n",
"ax[1].set_xlabel('Year') # note this is called with a \"set_\"\n",
"ax[1].set_ylabel('Frequency')\n",
"\n",
"plt.show()\n",
"# layout still a little funny"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAACcCAYAAADCmPcVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAZs0lEQVR4nO3df7RcdXnv8feHhCbhRy7SBC4m0IO9URewJMAxTYtWhKIoSPBSbLQ2tNLGcvGKVitJ673gcuWu6Ko/yuJCjcolkUKIiBL5IQYU0a5oOAkICSQlkgiHpCSiLYGFCYTn/rG/p2xPZs7Zc87eM3tOPq+1Zs2e7+y955kzZz/zzN77u7+KCMzMzMysvg7odABmZmZmNjQXbGZmZmY154LNzMzMrOZcsJmZmZnVnAs2MzMzs5pzwWZmZmZWc5UVbJKulbRD0vpc2xWSnpL0YLq9M/fcQkmbJW2S9PZc+ymSHk7PXSlJVcVsZmZmVkdV7mG7DjirQfsXImJmut0BIOk4YC5wfFrmaknj0vzXAPOBGenWaJ1mZmZmY9b4qlYcEfdJ6ik4+xxgeUTsBrZI2gzMkrQVmBwRqwEkLQPOA+4cboVTpkyJnp6iL29m3W7t2rW/iIipnY6jDM5fZvuf4XJYZQXbED4kaR7QB3wsIn4FTAN+nJunP7W9mKYHtw+rp6eHvr6+ciI2s9qT9PNOx1AW5y+z/c9wOazdnQ6uAX4XmAlsBz6X2hudlxZDtDckab6kPkl9O3fuHG2sZmZmZrXQ1oItIp6OiL0R8TLwZWBWeqofODo363RgW2qf3qC92fqXRERvRPROnTomjoyYmZmZtbdgk3RU7uG7gYEepCuBuZImSDqWrHPBmojYDuySNDv1Dp0H3NrOmM3MzMw6rbJz2CTdCJwGTJHUD1wOnCZpJtlhza3ABwEiYoOkFcAjwEvAJRGxN63qYrIep5PIOhsM2+HArBv1LLi9snVvXXx2Zes2M+tW3ZR3q+wl+t4GzV8dYv5FwKIG7X3ACSWGZmZmZtZVPNKBmZmZWc25YDMzMzOrORdsZmZmZjXngs3MzMys5lywmZk1IWmcpAck3ZYeHy5plaTH0v2rcvMulLRZ0iZJb8+1nyLp4fTclekSRWZmLXHBZmbW3KXAo7nHC4B7ImIGcE96jKTjgLnA8cBZwNWSxqVlrgHmk11fckZ63sysJS7YzMwakDQdOBv4Sq55DrA0TS8Fzsu1L4+I3RGxBdgMzEoXC58cEasjIoBluWXMzApzwWZm1tgXgU8AL+fajkwjsJDuj0jt04Anc/P1p7ZpaXpwu5lZS1ywmZkNIukcYEdErC26SIO2GKK90WvOl9QnqW/nzp0FX9bM9hcu2MzM9nUqcK6krcBy4HRJ1wNPD4yJnO53pPn7gaNzy08HtqX26Q3a9xERSyKiNyJ6p06dWuZ7MbMxwAWbmdkgEbEwIqZHRA9ZZ4LvRcT7gZXAhWm2C4Fb0/RKYK6kCZKOJetcsCYdNt0laXbqHTovt4yZWWGVjSVqZjYGLQZWSLoIeAK4ACAiNkhaATwCvARcEhF70zIXA9cBk4A7083MrCUu2MzMhhAR9wL3pulngDOazLcIWNSgvQ84oboIzWx/4EOiZmZmZjXngs3MzMys5lywmZmZmdWcCzYzMzOzmnPBZmZmZlZzLtjMzMzMas4Fm5mZmVnNuWAzMzMzqzkXbGZmZmY155EOzPYDPQtur2zdWxefXdm6zcwsU2gPmyQPq2JmXcs5zMy6XdFDov8kaY2k/yHpsEojMjMrn3OYmXW1QgVbRLwJ+FPgaKBP0g2Szqw0MjOzkjiHmVm3K9zpICIeAz4JXAa8BbhS0kZJ/72q4MzMyuIcZmbdrFCnA0lvAP4COBtYBbwrItZJejWwGrilwTLXAucAOyLihNR2OHAT0ANsBd4TEb9Kzy0ELgL2Ah+OiLtS+ynAdcAk4A7g0oiIkb1ds9Gp8uR9q06rOUzSROA+YAJZnrw5Ii53DjOzTim6h+0qYB1wYkRcEhHrACJiG9kv1kauA84a1LYAuCciZgD3pMdIOg6YCxyflrla0ri0zDXAfGBGug1ep5nZcFrNYbuB0yPiRGAmcJak2TiHmVmHFC3Y3gncEBEvAEg6QNJBABHxtUYLRMR9wC8HNc8BlqbppcB5ufblEbE7IrYAm4FZko4CJkfE6vSLdFluGTOzolrKYZF5Lj08MN0C5zAz65CiBdvdZLvzBxyU2lp1ZERsB0j3R6T2acCTufn6U9u0ND243cysFS3nMEnjJD0I7ABWRcRPcA4zsw4pWrBNzP3aJE0fVGIcatAWQ7Q3Xok0X1KfpL6dO3eWFpyZdb2Wc1hE7I2ImcB0sr1lQ13LbdQ5zPnLzIZStGB7XtLJAw/SSbQvjOD1nk6HCEj3O1J7P1l3+wHTgW2pfXqD9oYiYklE9EZE79SpU0cQnpmNUSPOYRHx78C9ZOeeVZbDnL/MbChFC7aPAF+X9ENJPyTrJfWhEbzeSuDCNH0hcGuufa6kCZKOJTsxd0065LBL0mxJAublljEzK6qlHCZp6sAFdiVNAv4I2IhzmJl1SKHLekTE/ZJeD7yObBf/xoh4cahlJN0InAZMkdQPXA4sBlZIugh4ArggrX+DpBXAI8BLwCURsTet6mJe6RJ/Z7qZmRU2ghx2FLA09fQ8AFgREbdJWo1zmJl1QCuDv7+R7NpD44GTJBERy5rNHBHvbfLUGU3mXwQsatDeB3gcQDMbrcI5LCIeAk5q0P4MzmFm1gFFL5z7NeB3gQfJLgoJ2YmzTQs2M7O6cA4zs25XdA9bL3Ccr85tZl3KOczMulrRTgfrgf9aZSBmZhVyDjOzrlZ0D9sU4BFJa8iGbAEgIs6tJCozs3I5h5lZVytasF1RZRBmZhW7otMBmJmNRtHLevxA0u8AMyLi7jQG37jhljMzqwPnMDPrdoXOYZP0V8DNwJdS0zTgW1UFZWZWJucwM+t2RTsdXAKcCjwLEBGP8cqgx2ZmdeccZmZdrWjBtjsi9gw8kDSeIQZhNzOrGecwM+tqRQu2H0j6O2CSpDOBrwPfri4sM7NSOYeZWVcrWrAtAHYCDwMfBO4APllVUGZmJXMOM7OuVrSX6MvAl9PNzKyrOIeZWbcrOpboFhqc7xERryk9IjOzkjmHmVm3a2Us0QETgQuAw8sPx8ysEs5hZtbVCp3DFhHP5G5PRcQXgdMrjs3MrBTOYWbW7YoeEj059/AAsl+rh1YSkZlZyVrNYZKOBpaRDRj/MrAkIv5R0uHATUAPsBV4T0T8Ki2zELgI2At8OCLuSu2nANcBk8g6O1waEb6kiJm1pOgh0c/lpl8iJarSozEzq0arOewl4GMRsU7SocBaSauAPwfuiYjFkhaQ9T69TNJxwFzgeODVwN2SXhsRe4FrgPnAj8kKtrOAO8t8c2Y29hXtJfrWqgMxM6tKqzksIrYD29P0LkmPkg1nNQc4Lc22FLgXuCy1L4+I3cAWSZuBWZK2ApMjYjWApGXAebhgM7MWFT0k+jdDPR8Rny8nHDOz8o0mh0nqAU4CfgIcmYo5ImK7pIHhraaR7UEb0J/aXkzTg9vNzFrSSi/RNwIr0+N3AfcBT1YRlJlZyUaUwyQdAnwD+EhEPCup6awN2mKI9kavNZ/s0CnHHHPMUGGZ2X6oaME2BTg5InYBSLoC+HpE/GVVgZmZlajlHCbpQLJi7Z8j4pbU/LSko9LetaOAHam9Hzg6t/h0YFtqn96gfR8RsQRYAtDb2+tOCWb2G4oOTXUMsCf3eA9ZLykzs27QUg5Ttivtq8Cjgw6XrgQuTNMXArfm2udKmiDpWGAGsCYdPt0laXZa57zcMmZmhRXdw/Y1YI2kb5Ltzn83WZd3M7Nu0GoOOxX4M+BhSQ+mtr8DFgMrJF0EPEF2AV4iYoOkFcAjZD1ML0k9RAEu5pXLetyJOxyY2QgU7SW6SNKdwJtT019ExAPVhWVmVp5Wc1hE/IjG558BnNHsNYBFDdr7gBNai9jM7DcVPSQKcBDwbET8I9CfdvubmXUL5zAz61qFCjZJl5Nda2hhajoQuL6qoMzMyuQcZmbdrugetncD5wLPA0TENkYxNJWkrZIelvSgpL7UdrikVZIeS/evys2/UNJmSZskvX2kr2tm+61Sc5iZWbsVLdj2pLHvAkDSwSW89lsjYmZE9KbHC8iGfJkB3JMeM2jIl7OAqyWNK+H1zWz/UUUOMzNrm6IF2wpJXwIOk/RXwN3Al0uOZQ7ZUC+k+/Ny7csjYndEbAE2A7NKfm0zG9vakcPMzCozbC/RdO2gm4DXA88CrwP+d0SsGsXrBvBdSQF8KV0wstUhX8zMhlVRDjMza6thC7aICEnfiohTgLIS3KkRsS0VZaskbRxiXg/tYmYjVlEOMzNrq6KHRH8s6Y1lvWg64ZeI2AF8k+wQ59NpqBcKDvnSaL1LIqI3InqnTp1aVrhm1v1KzWFmZu1WtGB7K1nC+5mkh1IPz4dG8oKSDpZ06MA08DZgPS0O+TKS1zaz/VZpOczMrBOGPCQq6ZiIeAJ4R4mveSTwzey0EsYDN0TEdyTdT+tDvpiZNVVRDjMza7vhzmH7FnByRPxc0jci4vzRvmBEPA6c2KD9GVoc8sXMbBil5zAzs04Y7pBo/oT/11QZiJlZBZzDzGxMGG4PWzSZNqutngW3dzoEqw/nMDMbE4Yr2E6U9CzZr9RJaZr0OCJicqXRmZmNjnOYmY0JQx4SjYhxETE5Ig6NiPFpeuCxE52Z1dpocpikayXtkLQ+19bymMeSTkm9UjdLujJdyNfMrCVFL+thZra/uY5s/OK8kYx5fA3ZBb1npNvgdZqZDcsFm5lZAxFxH/DLQc0tjXmcLgI+OSJWp8Hnl+WWMTMrzAWbmVlxvzHmMZAf8/jJ3HwDYx5PS9OD283MWuKCzcxs9JqNedzSWMiS+iT17dy5s9TgzKz7uWAzMyuu1TGP+9P04PZ9eCxkMxuKCzYzs+JaGvM4HTbdJWl26h06L7eMmVlhw12HzcxsvyTpRuA0YIqkfuByYDGtj3l8MVmP00nAnelmZtYSF2xmZg1ExHubPNXSmMcR0QecUGJoZrYfcsFmZmZmteXhBjM+h83MzMys5lywmZmZmdWcCzYzMzOzmnPBZmZmZlZzLtjMzMzMas4Fm5mZmVnN+bIe1nbuom1mZtYa72EzMzMzqzkXbGZmZmY154LNzMzMrOZcsJmZmZnVnDsdmNmoVNmJZOvisytbt5lZN3HBZg25J6eZmVl9uGAzMzOzUfGP/Op1zTlsks6StEnSZkkLOh2PmVlRzl9mNlpdsYdN0jjg/wJnAv3A/ZJWRsQjnY2ss/yLxqz+nL/MrAxdUbABs4DNEfE4gKTlwBzACc/M6s75ywrzD3FrplsKtmnAk7nH/cDvlbVybyBmVqFK85e1n78zrBO6pWBTg7bYZyZpPjA/PXxO0qZKoxqZKcAvOh1EBcbi+xqL7wm66H3pMy3N/rqKwhitKvNXXT/LusYFjm2k6hpbXeNCn2k5tt8Z6sluKdj6gaNzj6cD2wbPFBFLgCXtCmokJPVFRG+n4yjbWHxfY/E9wdh+X52OoYnK8lddP8u6xgWObaTqGltd44LyY+uWXqL3AzMkHSvpt4C5wMoOx2RmVoTzl5mNWlfsYYuIlyR9CLgLGAdcGxEbOhyWmdmwnL/MrAxdUbABRMQdwB2djqMEtT5kOwpj8X2NxfcEfl9tV2H+qut7rmtc4NhGqq6x1TUuKDk2Rexz7quZmZmZ1Ui3nMNmZmZmtt9ywdYmko6W9H1Jj0raIOnSTsdUFknjJD0g6bZOx1IWSYdJulnSxvSZ/X6nYxotSR9N/3vrJd0oaWKnYxoJSddK2iFpfa7tcEmrJD2W7l/VyRhHqsl7O1HSakkPS/q2pMm55xam4a42SXp7rv2UNP9mSVdKanRpkcpik3SmpLWpfa2k0+sSW+75YyQ9J+njVcU2gs/zDem5Den5iVXE1Wpskg6UtDS1PyppYW6Zsv9mDb8rh9rG27UdtBpb6dtBRPjWhhtwFHBymj4U+FfguE7HVdJ7+xvgBuC2TsdS4ntaCvxlmv4t4LBOxzTK9zMN2AJMSo9XAH/e6bhG+F7+EDgZWJ9r+yywIE0vAD7T6ThLfG/3A29J0x8APp2mjwN+CkwAjgV+BoxLz60Bfp/sGnB3Au9oc2wnAa9O0ycAT+WW6Whsuee/AXwd+HhVsbX4NxsPPAScmB7/do0+z/cBy9P0QcBWoKeiv1nD78pm23g7t4MRxFbqduA9bG0SEdsjYl2a3gU8SvYl2tUkTQfOBr7S6VjKkn5V/iHwVYCI2BMR/97ZqEoxHpgkaTxZ0t3nWmDdICLuA345qHkOWZFNuj+vrUGVpMl7ex1wX5peBZyfpueQfYnujogtwGZglqSjgMkRsTqyb4ZllPD3aCW2iHggIgb+vzYAEyVNqENsAJLOAx5PsQ20lR5bi3G9DXgoIn6aln0mIvbW5G8WwMEpd0wC9gDPVvQ3a/Zd2Wwbb9t20GpsZW8HLtg6QFIPWeX9k85GUoovAp8AXu50ICV6DbAT+H/KDvV+RdLBnQ5qNCLiKeAfgCeA7cB/RMR3OxtVqY6MiO2QJVXgiA7HU6b1wLlp+gJeuQhvoyGvpqVbf4P2dsaWdz7wQETsrkNsaVu+DPjUoPnbFVuzv9lrgZB0l6R1kj7R5riGiu1m4Hmy3PEE8A8R8cuqYxv0XdlsG+/IdlAwtrxRbwcu2NpM0iFku+I/EhHPdjqe0ZB0DrAjItZ2OpaSjSc7VHBNRJxElqgWdDak0UnnVMwhO2TwarJfy+/vbFRW0AeASyStJTsMsye1NxvyqtBQWBXHBoCk44HPAB8caKpBbJ8CvhARzw2av12xNYtrPPAm4E/T/bslndHGuIaKbRawlyx3HAt8TNJrqoythe/Ktm8HrX6Pl7UddM112MYCSQeSfcj/HBG3dDqeEpwKnCvpncBEYLKk6yOi2wuBfqA/Igb2gN5MlxdswB8BWyJiJ4CkW4A/AK7vaFTleVrSURGxPR1u2NHpgMoSERvJDpch6bVkpyBA8yGv+tP04PZ2xjZwusQ3gXkR8bNczJ2O7feAP5b0WeAw4GVJvybLzZXHNszn+YOI+EV67g6yH47XtyOuYWJ7H/CdiHgR2CHpX4Be4IdVxNbku7LZNt7W7aDF2ErdDryHrU1SD5CvAo9GxOc7HU8ZImJhREyPiB6y4Xa+NwaKNSLi34AnJQ0MJn4G8EgHQyrDE8BsSQel/8UzyM6/GCtWAhem6QuBWzsYS6kkHZHuDwA+CfxTemolMDedE3MsMANYkw7J7JI0O33W86jo79EsNkmHAbcDCyPiXwbmr0NsEfHmiOhJeeuLwP+JiKvaFdsQn+ddwBvSNjoeeAvwSB3+ZmT543RlDgZmAxuriG2I78pm23jbtoNWYyt9OxiuV4Jv5dzIdnEHWS+gB9PtnZ2Oq8T3dxpjq5foTKAvfV7fAl7V6ZhKeE+fAjaSnafyNWBCp2Ma4fu4kexcmhfJfqleRNaj7h7gsXR/eKfjLPG9XUrWG+1fgcWkC56n+f+erFfcJnK9zMj2fqxPz12VX6YdsZF92T+fy3UPAkfUIbZBy13Bb/YSLTW2EXye7yc7OX098NkafZ6HkPWo3UD24/VvK/ybNfyuHGobb9d20GpsZW8HHunAzMzMrOZ8SNTMzMys5lywmZmZmdWcCzYzMzOzmnPBZmZmZlZzLtjMzMzMas4Fm1VK0nPpvkdSSPp07rkpkl6UdFV6fIWkpyQ9KOkxSbdIOi43/1ZJU0qKq0fS+3KPeyVdWca6zczy0vXLfiTpHbm290j6Tifjsu7igs3a6XHgnNzjC8gNvpx8ISJmRsQM4Cbge5KmjuTF0sUnm+khu3o3ABHRFxEfHsnrmJkNJbLrZ/018HlJE9PFZxcBl4xkfZLGlRmfdQcXbNZOLwCPSupNj/8EWNFs5oi4CfguucIK+FtJa9Ltvw1eJu2lWyLpu8CytCfth8oGU14n6Q/SrIuBN6e9eR+VdJqk23LruFbSvZIel/Th3Pr/l6SNklZJulHSx0f1FzGz/UJErAe+TTbw/OVkQ079vaT7JT0gaQ78597/fXJWylHfl3QD8HCn3od1jscStXZbTjaMyL+RDSa8jWxA4WbWAa/PPX42ImZJmkc2rMw5DZY5BXhTRLwg6SDgzIj4taQZZFf37iUbG/TjEXEOZMlw0DpeD7yVbADkTZKuAU4EzgdOItt21gFjbeB7M6vOp8jyxh7gNrLh/D6QhjBaI+lusnEoG+UsyAZhPyEitnQgduswF2zWbt8BPg08TXbIczga9PjG3P0XmiyzMiJeSNMHAldJmklWIL62YJy3R8RuYLekHcCRZMOS3DqwbknfLrguMzMi4nlJNwHPAe8B3pXbSz8ROIbsR2yznLXGxdr+ywWbtVVE7JG0FvgYcDzwrmEWOYlsTM//XEWT6bznc9MfJSsOTyQ7BeDXBUPdnZveS7atDC4ezcxa9XK6CTg/Ijbln5R0Bc1zVj632X7G57BZJ3wOuCwinhlqJknnA2/jlb1qkJ33NnC/usBr/Rdge0S8DPwZMHCy7i6yw52t+BHZL+KJkg4Bzm5xeTOzAXcB/1OSACSdlNqb5Szbz3kPm7VdRGxg396hAz4q6f3AwcB64PSI2Jl7foKkn5D92HhvgZe7GviGpAuA7/PKL9SHgJck/RS4DnigQNz3S1oJ/BT4Odmev/8oEIOZ2WCfJjsP96FUtG0lOye3Wc6y/Zyy3sZmVoSkQyLiudSZ4T5gfkSs63RcZmY2tnkPm1lrlqSL+U4ElrpYMzOzdvAeNjMzM7Oac6cDMzMzs5pzwWZmZmZWcy7YzMzMzGrOBZuZmZlZzblgMzMzM6s5F2xmZmZmNff/AZbY7le3ftqXAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(10, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"\n",
"# on my SECOND set of axis I want to do a distribution of \"Year\" column\n",
"#ax[0].hist(movies['Years']) # This doesn't work because \"Years\" is NOT \"Year\"\n",
"ax[1].hist(movies['Year']) # I've updated the column that is being histogrammed\n",
"ax[1].set_xlabel('Year') # note this is called with a \"set_\"\n",
"ax[1].set_ylabel('Frequency')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"AxesSubplot(0.125,0.125;0.352273x0.755)\n",
"AxesSubplot(0.547727,0.125;0.352273x0.755)\n"
]
}
],
"source": [
"for myAxes in ax:\n",
" print(myAxes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## If you are interested here is some more fancy Pandas stuff"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pandas.core.frame.DataFrame"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(movies) # DataFrame object, popular for stats and also machine learning stuff"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" Unnamed: 0 Title Year Age IMDb \\\n",
"59 59 The Twilight Zone 1959 7+ 9.0 \n",
"99 99 Star Trek 1966 7+ 8.3 \n",
"112 112 Monty Python's Flying Circus 1969 16+ 8.8 \n",
"360 360 The Andy Griffith Show 1960 all 8.3 \n",
"558 558 Dad's Army 1968 7+ 8.1 \n",
"... ... ... ... ... ... \n",
"4965 4965 I've Got a Secret 1961 NaN NaN \n",
"4985 4985 Classic Popeye 1960 NaN NaN \n",
"5039 5039 Television Playhouse 1947 NaN NaN \n",
"5442 5442 The Wackiest Works of Tex Avery 1945 NaN NaN \n",
"5578 5578 Spin and Marty 1955 all 8.2 \n",
"\n",
" Rotten Tomatoes Netflix Hulu Prime Video Disney+ type \n",
"59 82% 1 1 0 0 1 \n",
"99 80% 1 1 1 0 1 \n",
"112 100% 1 0 0 0 1 \n",
"360 NaN 1 0 1 0 1 \n",
"558 NaN 1 0 0 0 1 \n",
"... ... ... ... ... ... ... \n",
"4965 NaN 0 0 1 0 1 \n",
"4985 NaN 0 0 1 0 1 \n",
"5039 NaN 0 0 1 0 1 \n",
"5442 NaN 0 0 1 0 1 \n",
"5578 NaN 0 0 0 1 1 \n",
"\n",
"[105 rows x 11 columns]"
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"movies.loc[movies['Year'] < 1970] # .loc NOT .iloc"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
"early_movies = movies.loc[movies['Year'] < 1970]"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Unnamed: 0
\n",
"
Title
\n",
"
Year
\n",
"
Age
\n",
"
IMDb
\n",
"
Rotten Tomatoes
\n",
"
Netflix
\n",
"
Hulu
\n",
"
Prime Video
\n",
"
Disney+
\n",
"
type
\n",
"
\n",
" \n",
" \n",
"
\n",
"
59
\n",
"
59
\n",
"
The Twilight Zone
\n",
"
1959
\n",
"
7+
\n",
"
9.0
\n",
"
82%
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
99
\n",
"
99
\n",
"
Star Trek
\n",
"
1966
\n",
"
7+
\n",
"
8.3
\n",
"
80%
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
112
\n",
"
112
\n",
"
Monty Python's Flying Circus
\n",
"
1969
\n",
"
16+
\n",
"
8.8
\n",
"
100%
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
360
\n",
"
360
\n",
"
The Andy Griffith Show
\n",
"
1960
\n",
"
all
\n",
"
8.3
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
558
\n",
"
558
\n",
"
Dad's Army
\n",
"
1968
\n",
"
7+
\n",
"
8.1
\n",
"
NaN
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
4965
\n",
"
4965
\n",
"
I've Got a Secret
\n",
"
1961
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
4985
\n",
"
4985
\n",
"
Classic Popeye
\n",
"
1960
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
5039
\n",
"
5039
\n",
"
Television Playhouse
\n",
"
1947
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
5442
\n",
"
5442
\n",
"
The Wackiest Works of Tex Avery
\n",
"
1945
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
5578
\n",
"
5578
\n",
"
Spin and Marty
\n",
"
1955
\n",
"
all
\n",
"
8.2
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
105 rows × 11 columns
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Title Year Age IMDb \\\n",
"59 59 The Twilight Zone 1959 7+ 9.0 \n",
"99 99 Star Trek 1966 7+ 8.3 \n",
"112 112 Monty Python's Flying Circus 1969 16+ 8.8 \n",
"360 360 The Andy Griffith Show 1960 all 8.3 \n",
"558 558 Dad's Army 1968 7+ 8.1 \n",
"... ... ... ... ... ... \n",
"4965 4965 I've Got a Secret 1961 NaN NaN \n",
"4985 4985 Classic Popeye 1960 NaN NaN \n",
"5039 5039 Television Playhouse 1947 NaN NaN \n",
"5442 5442 The Wackiest Works of Tex Avery 1945 NaN NaN \n",
"5578 5578 Spin and Marty 1955 all 8.2 \n",
"\n",
" Rotten Tomatoes Netflix Hulu Prime Video Disney+ type \n",
"59 82% 1 1 0 0 1 \n",
"99 80% 1 1 1 0 1 \n",
"112 100% 1 0 0 0 1 \n",
"360 NaN 1 0 1 0 1 \n",
"558 NaN 1 0 0 0 1 \n",
"... ... ... ... ... ... ... \n",
"4965 NaN 0 0 1 0 1 \n",
"4985 NaN 0 0 1 0 1 \n",
"5039 NaN 0 0 1 0 1 \n",
"5442 NaN 0 0 1 0 1 \n",
"5578 NaN 0 0 0 1 1 \n",
"\n",
"[105 rows x 11 columns]"
]
},
"execution_count": 91,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"early_movies"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAACaCAYAAAAKCCS7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWIUlEQVR4nO3dfbQkdX3n8fdHMI6oCRIGRXS8mEUMuvLgSEx8iEImQUHBZUFdH4iaEM+6GzW6cTTZFY8nnjEn8emwm2R8WFEjgg8RFFdFFIl7iDAzAoLIojAiOjIj0fAggsB3/6i62lzmzvTt6erqe+/7dU6frqquqv5Wdd/v/favHn6pKiRJkjR59+k7AEmSpOXKQkySJKknFmKSJEk9sRCTJEnqiYWYJElSTyzEJEmSerJ73wEMY++9966ZmZm+w5A0QRs3bvxRVa3sO45dZf6Slp+F5K9FUYjNzMywYcOGvsOQNEFJvjsFMewGbAC+X1XHJNkLOAOYATYDJ1bVj3e0DvOXtPwsJH95aFKS5vcq4MqB8bXAeVV1AHBeOy5JI7MQk6TtSPJw4GjgvQOTjwVOa4dPA46bdFySlhYLMUnavncCfw7cPTDtIVW1BaB93qePwCQtHYviHDEtXzNrz+ls3ZvXHd3ZurW4JTkG2FpVG5M8fYTlTwZOBli1atWYo5O0PYv1/4UtYpJ0b08GnpNkM/BR4IgkHwZuSLIvQPu8dXsLV9X6qlpdVatXrlz0F35K6pCFmCTNUVVvqKqHV9UM8HzgS1X1IuBs4KR2tpOAs3oKUdISYSEmScNbB6xJcjWwph2XpJF5jpgk7UBVnQ+c3w7fCBzZZzySlhZbxCRJknpiISZJktQTCzFJkqSeWIhJkiT1xEJMkiSpJxZikiRJPbEQkyRJ6omFmCRJUk8sxCRJknpiISZJktQTCzFJkqSeWIhJkiT1xEJMkiSpJ7v3HYAkSVoeZtae03cIU8cWMUmSpJ501iKW5BHAB4GHAncD66vqXUn2As4AZoDNwIlV9eOu4pDm0+Uvs83rju5s3ZKkpaPLFrE7gddW1W8CTwJemeQgYC1wXlUdAJzXjkuSJC07nRViVbWlqja1wzcDVwL7AccCp7WznQYc11UMkjSKJCuSXJTk0iRXJHlzO32vJOcmubp9fnDfsUpa3CZyjliSGeBQ4GvAQ6pqCzTFGrDPJGKQpAW4HTiiqg4GDgGOSvIkbNGXNGadF2JJHgh8Anh1Vd20gOVOTrIhyYZt27Z1F6AkzVGNW9rR+7aPwhZ9SWM2VCGW5HGjrDzJfWmKsH+sqk+2k29Ism/7+r7A1u0tW1Xrq2p1Va1euXLlKG8vScBoOSzJbkkuoclR51aVLfqSxm7YFrG/b8+X+M9J9hxmgSQB3gdcWVVvH3jpbOCkdvgk4Kyho5Wk0Sw4h1XVXVV1CPBw4PCFFHO26Esa1lCFWFU9BXgh8AhgQ5KPJFmzk8WeDLwYOCLJJe3jWcA6YE2Sq4E17bgkdWbEHDa77E+A84GjsEVf0pgNfR+xqro6yV8CG4B3A4e2rV5vHDjsODj/V4HMs7ojRwlWkka1kByWZCXw86r6SZL7A78HvI1ftuivwxZ9SWMwVCGW5PHAS4GjgXOBZ1fVpiQPAy4E7lWISdK0GCGH7QuclmQ3miMHZ1bVZ5JcCJyZ5OXAdcAJE9sISUvSsC1ipwLvofnleNvsxKr6QfsLU5Km2YJyWFVdRnPLnbnTb8QWfUljNGwh9izgtqq6CyDJfYAVVfXTqvpQZ9FJ0niYwyRNpWGvmvwicP+B8T3aaZK0GJjDJE2lYQuxFQM3N6Qd3qObkCRp7MxhkqbSsIXYrUkOmx1J8gTgth3ML0nTxBwmaSoNe47Yq4GPJflBO74v8LxuQpKksTOHSZpKQxViVXVxkscAB9LcG+xbVfXzTiOTpDExh0maVkPf0BV4IjDTLnNoEqrqg51EJUnjZw6TNHWGvaHrh4DfAC4B7monF2ASkzT1zGGSptWwLWKrgYOqqroMRpI6Yg6TNJWGvWrycuChXQYiSR0yh0maSsO2iO0NfDPJRcDtsxOr6jmdRCVJ42UOkzSVhi3ETukyCEnq2Cl9ByBJ2zPs7Su+kuSRwAFV9cUkewC7dRuaJI2HOUzStBrqHLEkfwx8HPiHdtJ+wKe6CkqSxskcJmlaDXuy/iuBJwM3AVTV1cA+XQUlSWNmDpM0lYYtxG6vqjtmR5LsTnMPHklaDMxhkqbSsIXYV5K8Ebh/kjXAx4BPdxeWJI2VOUzSVBr2qsm1wMuBbwB/AnwWeG9XQUmL3czaczpb9+Z1R3e27iVsQTksySNo7rr/UOBuYH1VvSvJXsAZNF0lbQZOrKofdxq5pCVt2Ksm7wbe0z4kaVEZIYfdCby2qjYleRCwMcm5wB8C51XVuiRraQq813cRs6TlYdi+Jq9lO+dTVNWjxh6RJI3ZQnNYVW0BtrTDNye5kuZKy2OBp7eznQacj4WYpF2wkL4mZ60ATgD2Gn84ktSJkXNYkhngUOBrwEPaIo2q2pLEKy8l7ZKhTtavqhsHHt+vqncCR3QcmySNxag5LMkDgU8Ar66qm4Z9vyQnJ9mQZMO2bdt2IXJJS92whyYPGxi9D82vywd1EpEkjdkoOSzJfWmKsH+sqk+2k29Ism/bGrYvsHV7y1bVemA9wOrVq71NhqR5DXto8m8Hhu+kvVpo7NFIUjcWlMOSBHgfcGVVvX3gpbOBk4B17fNZY49U0rIy7FWTz+g6EEnqygg57MnAi4FvJLmknfZGmgLszCQvB66jOddMkkY27KHJP9vR63N+MUrSVFloDquqrwKZZ/YjxxWXJC3kqskn0jTLAzwbuAD4XhdBSdKYmcOkIXV5Q2rd27CF2N7AYVV1M0CSU4CPVdUfdRWYJI2ROUzSVBq2r8lVwB0D43fQdPEhSYuBOUzSVBq2RexDwEVJ/onm7tTPpemHbV5J3g8cA2ytqse10+ynTVIfFpzDJGkShr2h618BLwV+DPwEeGlVvXUni30AOGrOtLU0/bQdAJzXjktSp0bMYZLUuWEPTQLsAdxUVe8Crk+y/45mrqoLgH+dM/lYmv7ZaJ+PW8D7S9KuWFAOk6RJGKoQS/Immo5t39BOui/w4RHe7x79tAH20yapc2PMYZI0VsOeI/Zcmk5vNwFU1Q+SdNrFUZKTgZMBVq1a1eVbSYtKl5eWb153dGfr7tnEc5gkDWPYQ5N3VFXRnORKkgeM+H43tP2zsaN+2qDpq62qVlfV6pUrV474dpIEjC+HSdJYDVuInZnkH4A9k/wx8EXgPSO832w/bWA/bZImZ1w5TJLGaqeHJtvOb88AHgPcBBwI/I+qOncny50OPB3YO8n1wJuwnzZJEzZqDpOkSdhpIVZVleRTVfUEYOjEVVUvmOcl+2mTNDGj5jBJmoRhD03+S5IndhqJJHXHHCZpKg171eQzgFck2QzcCoTmh+bjuwpMksbIHCZpKu2wEEuyqqquA545oXgkaWzMYZKm3c5axD4FHFZV303yiao6fhJBaXHp8r5W0i4yh0maajs7RywDw4/qMhBJ6oA5TNJU21khVvMMS9JiMHIOS/L+JFuTXD4wba8k5ya5un1+8NgilbQs7awQOzjJTUluBh7fDt+U5OYkN00iQEnaBbuSwz4AHDVn2lrgvKo6ADivHZekke3wHLGq2m1SgUjSuO1KDquqC5LMzJl8LM2NqgFOA86n6UxckkYy7H3EJEnwkKraAtA+79NzPJIWOQsxSRqzJCcn2ZBkw7Zt2/oOR9IUsxCTpOHdkGRfgPZ56/Zmqqr1VbW6qlavXLlyogFKWlwsxCRpeGcDJ7XDJwFn9RiLpCXAQkyStiPJ6cCFwIFJrk/ycmAdsCbJ1cCadlySRjZsX5OStKxU1QvmeenIiQYiaUmzRUySJKknFmKSJEk9sRCTJEnqieeISZK0yMysPafvEDQmtohJkiT1xEJMkiSpJxZikiRJPbEQkyRJ6omFmCRJUk+W3FWTXV9Jsnnd0Z2uvyteYaNhdPk9Wax/O5LUJVvEJEmSemIhJkmS1BMLMUmSpJ4suXPEJGkx8zy9yXJ/q2+2iEmSJPXEQkySJKknFmKSJEk96aUQS3JUkquSfDvJ2j5ikKRRmcMkjcvET9ZPshvwP4E1wPXAxUnOrqpvTjoWSVqoxZzDPDFdmj59tIgdDny7qq6pqjuAjwLH9hCHJI3CHCZpbPooxPYDvjcwfn07TZIWA3OYpLHp4z5i2c60utdMycnAye3oLUmu6jSqIeVtE3mbvYEfTeSdpsdy2+bltr3kbQve5kd2Fcsu2mkOW2D+mpbvwi7FMcbcuCT2B4xtnyyZ/TEmvcSxnc9yZ3EMnb/6KMSuBx4xMP5w4AdzZ6qq9cD6SQU1TZJsqKrVfccxScttm5fb9sKS2uad5rCF5K9p2S/GYRzG0U8cfRyavBg4IMn+SX4FeD5wdg9xSNIozGGSxmbiLWJVdWeS/wJ8HtgNeH9VXTHpOCRpFOYwSePUS1+TVfVZ4LN9vPcisRwPyS63bV5u2wtLaJvHnMOmZb8Yxz0Zxz0Zxz2NLY5U3es8eUmSJE2AXRxJkiT1xEJsyiTZM8nHk3wryZVJfrvvmLqS5MAklww8bkry6r7j6lqS1yS5IsnlSU5PsqLvmLqU5FXttl6xHD5fgCTvT7I1yeUD0w5OcmGSbyT5dJJfHXjtDW13SVcl+YOB6U9o5/92kncn2d6tM8YSR5JfT/LlJLckOXXOeiYZx5okG9vpG5Mc0VMchw/kpkuTPHcccSz0u9G+vqr9XF7X076YSXLbwP74+z7iaF97fPvaFe3rK3rYHy/MPf933Z3kkJHjqCofU/QATgP+qB3+FWDPvmOa0HbvBvwQeGTfsXS8nfsB1wL3b8fPBP6w77g63N7HAZcDe9Cck/pF4IC+45rAdj8NOAy4fGDaxcDvtsMvA97SDh8EXArcD9gf+A6wW/vaRcBv09y77P8Az+wwjgcATwFeAZw6Zz2TjONQ4GED35/v9xTHHsDu7fC+wNaB8ZHjWEgMA69/AvgY8Lqe9sXM4Hw9fjd2By4DDm7Hf50e/lbmLPfvgWt2ZX/YIjZF2mr7acD7AKrqjqr6Sb9RTcyRwHeq6rt9BzIBuwP3T7I7TbK/1330lpDfBP6lqn5aVXcCXwGeu5NlFr2qugD41zmTDwQuaIfPBY5vh48FPlpVt1fVtcC3gcOT7Av8alVdWE2G/yBwXFdxVNWtVfVV4GeDM/cQx9eravZv4gpgRZL79RDH7HcWYAXtTXt3NY4FfjdIchxwDc2+mJ020X0xnx7i+H3gsqq6tF32xqq6q+f98QLgdBh9f1iITZdHAduA/53k60nem+QBfQc1Ic+n/TIvZVX1feBvgOuALcC/VdUX+o2qU5cDT0tz2GsP4Fnc82aoy8nlwHPa4RP45X6Yr8uk/drhudO7imM+fcZxPPD1qrq9jziS/FaSK4BvAK9oC7Mu4thuDG3+fz3w5jnz9/GZ7N/+X/pKkqf2FMejgUry+SSbkvx5T3EMeh6//N81UhwWYtNld5qm0b+rqkOBW4G1/YbUvTQ3xXwOTdP7kpbkwTQtIPsDDwMekORF/UbVnaq6Engbza/Jz9EcgrtzhwstXS8DXplkI/Ag4I52+nxdJg3VHdwY45hPL3EkeSzNd+dP+oqjqr5WVY8Fngi8oT0fqYs45ovhzcA7quqWOfNPel9sAVa1/5f+DPhIewRn0nHsTnP4/IXt83OTHNlDHEBTqAM/rarZ88pGiqOX+4hpXtcD11fV19rxj7MMCjHgmcCmqrqh70Am4PeAa6tqG0CSTwK/A3y416g6VFXvoz3cnuSt3PMX47JRVd+iObRCkkcDR7cvzddl0vXt8NzpXcUxn4nHkeThwD8BL6mq7/QVx8A8Vya5leactbHHsYMYfgv4j0n+GtgTuDvJz2jOGZvYvmhbJG9vhzcm+Q5N69SkP5Prga9U1Y/a1z5L03jx4QnHMWvukZyR9octYlOkqn4IfC/Jge2kI4Fv9hjSpPziGPsycB3wpCR7tFfTHAlc2XNMnUqyT/u8CvgPLJ/P+h4G9sN9gL8EZq88Oxt4fnse1P7AAcBFVbUFuDnJk9rvykuAszqMY7smHUeSPYFzgDdU1f/tMY792/M4SfJImvOFNncRx3wxVNVTq2qmqmaAdwJvrapTe9gXK5Ps1g4/iuY7ek0P39HPA49v8+fuwO8C3+zjb6WddgLw0dlpI8exkKsKfHT/AA4BNtBcGfIp4MF9x9Tx9u4B3Aj8Wt+xTHCb3wx8i+b8gw8B9+s7po63959pflBcChzZdzwT2ubTaQ7n/JzmV/LLgVcB/699rKO9oXY7/1/QXC15FQNXWQGr2+/Jd4BTB5fpKI7NNCcs39LOf9Ck46D5h3crcMnAY58e4ngxzQnylwCbgOPG8bks9DMZWO4U7nnV5CT3xfHtvri03RfP7vE7+qI2lsuBv+4xjqfTXIg0dz0LjsM760uSJPXEQ5OSJEk9sRCTJEnqiYWYJElSTyzEJEmSemIhJkmS1BMLMS1Iklva55kkleQtA6/tneTnSU5tx09J8v00vdNfneSTSQ4amH9zkr3HFNdMkv80ML46ybvHsW5JGpTGV5M8c2DaiUk+12dcWpwsxLQrrgGOGRg/gYGOaVvvqKpDquoA4AzgS0lWjvJmszdXnMcM8ItCrKo2VNWfjvI+krQj1dz36RXA25OsSNMn5F8BrxxlfbM3S9XyZCGmXXEbcGWS1e3484Az55u5qs4AvsBAwQT8tyQXtY9/N3eZtlVtfZIvAB9sW77+OU2Hr5uS/E476zrgqW3r22uSPD3JZwbW8f4k5ye5JsmfDqz/vyf5VpJzk5ye5HW7tEckLQvV9C/4aZpOud9E083OXyS5OE3n2MfCL1rr75Wz2hz15SQfoelUXMuUfU1qV32UpnuWHwJ30fSr9bAdzL8JeMzA+E1VdXiSl9B04XHMdpZ5AvCUqrotyR7Amqr6WZIDaO6GvJqmT87XVdUx0CS5Oet4DPAMmo5br0ryd8DBNHeMPpTmb2ETsHHoLZe03L2ZJm/cAXwG+FJVvaztpumiJF8EtrL9nAVwOPC4qrq2h9g1JSzEtKs+B7wFuIHm0OPOzO2d/vSB53fMs8zZVXVbO3xf4NQkh9AUfo8eMs5zqu24NslW4CHAU4CzZted5NNDrkuSqKpbk5xB0yXUicCzB1rVVwCraH6czpezLrIIk4WYdklV3ZFkI/Ba4LHAs3eyyKE0fWn+YhXzDA+6dWD4NTRF38E0h9Z/NmSotw8M30Xz3Z9bFErSQt3dPgIcX1VXDb6Y5BTmz1mDuU3LlOeIaRz+Fnh9Vd24o5mSHA/8Pr9sBYPmvLLZ5wuHeK9fA7ZU1d00nfLOnuR6M81hx4X4Ks0v2BVJHggcvcDlJWnW54H/miQASQ5tp8+XsyTAFjGNQVVdwb2vlpz1miQvAh5A0yP9EVW1beD1+yX5Gs2PghcM8Xb/C/hEkhOAL/PLX5SXAXcmuRT4APD1IeK+OMnZwKXAd2la6v5tiBgkaa630JznellbjG2mOed1vpwlAZDmKlxpeUrywKq6pb0I4ALg5Kra1HdckqTlwRYxLXfr25vMrgBOswiTJE2SLWKSJEk98WR9SZKknliISZIk9cRCTJIkqScWYpIkST2xEJMkSeqJhZgkSVJP/j9Bc3BD3hjodAAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(10, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(early_movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"\n",
"# on my SECOND set of axis I want to do a distribution of \"Year\" column\n",
"#ax[0].hist(movies['Years']) # This doesn't work because \"Years\" is NOT \"Year\"\n",
"ax[1].hist(early_movies['Year']) # I've updated the column that is being histogrammed\n",
"ax[1].set_xlabel('Year') # note this is called with a \"set_\"\n",
"ax[1].set_ylabel('Frequency')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"# another subset of LATE movies\n",
"late_movies = movies.loc[movies['Year'] >= 1970]"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Unnamed: 0
\n",
"
Title
\n",
"
Year
\n",
"
Age
\n",
"
IMDb
\n",
"
Rotten Tomatoes
\n",
"
Netflix
\n",
"
Hulu
\n",
"
Prime Video
\n",
"
Disney+
\n",
"
type
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0
\n",
"
Breaking Bad
\n",
"
2008
\n",
"
18+
\n",
"
9.5
\n",
"
96%
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
1
\n",
"
1
\n",
"
Stranger Things
\n",
"
2016
\n",
"
16+
\n",
"
8.8
\n",
"
93%
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
2
\n",
"
2
\n",
"
Money Heist
\n",
"
2017
\n",
"
18+
\n",
"
8.4
\n",
"
91%
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
3
\n",
"
3
\n",
"
Sherlock
\n",
"
2010
\n",
"
16+
\n",
"
9.1
\n",
"
78%
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
4
\n",
"
4
\n",
"
Better Call Saul
\n",
"
2015
\n",
"
18+
\n",
"
8.7
\n",
"
97%
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
5606
\n",
"
5606
\n",
"
Tut's Treasures: Hidden Secrets
\n",
"
2018
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
5607
\n",
"
5607
\n",
"
Paradise Islands
\n",
"
2017
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
5608
\n",
"
5608
\n",
"
Wild Russia
\n",
"
2018
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
5609
\n",
"
5609
\n",
"
Love & Vets
\n",
"
2017
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
\n",
"
\n",
"
5610
\n",
"
5610
\n",
"
United States of Animals
\n",
"
2016
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
5506 rows × 11 columns
\n",
"
"
],
"text/plain": [
" Unnamed: 0 Title Year Age IMDb \\\n",
"0 0 Breaking Bad 2008 18+ 9.5 \n",
"1 1 Stranger Things 2016 16+ 8.8 \n",
"2 2 Money Heist 2017 18+ 8.4 \n",
"3 3 Sherlock 2010 16+ 9.1 \n",
"4 4 Better Call Saul 2015 18+ 8.7 \n",
"... ... ... ... ... ... \n",
"5606 5606 Tut's Treasures: Hidden Secrets 2018 NaN NaN \n",
"5607 5607 Paradise Islands 2017 NaN NaN \n",
"5608 5608 Wild Russia 2018 NaN NaN \n",
"5609 5609 Love & Vets 2017 NaN NaN \n",
"5610 5610 United States of Animals 2016 NaN NaN \n",
"\n",
" Rotten Tomatoes Netflix Hulu Prime Video Disney+ type \n",
"0 96% 1 0 0 0 1 \n",
"1 93% 1 0 0 0 1 \n",
"2 91% 1 0 0 0 1 \n",
"3 78% 1 0 0 0 1 \n",
"4 97% 1 0 0 0 1 \n",
"... ... ... ... ... ... ... \n",
"5606 NaN 0 0 0 1 1 \n",
"5607 NaN 0 0 0 1 1 \n",
"5608 NaN 0 0 0 1 1 \n",
"5609 NaN 0 0 0 1 1 \n",
"5610 NaN 0 0 0 1 1 \n",
"\n",
"[5506 rows x 11 columns]"
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"late_movies"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAACaCAYAAAAUwRQIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVc0lEQVR4nO3de5SkdX3n8feHi1xlkQy4yMXG3YkuuuE2ErKaBHHxElTMclB0E8hqQsyyGyUmy2DclRwP5+CeRBMOGxNUFDSCeEdRIxg3rFl0mOEi94Aw4ghxjJ6EyyIX+e4fz9OxMnT3VHVX9fNUz/t1Tp1+6ldVT32eme5vfeu5pqqQJElSf23XdQBJkiQtzIZNkiSp52zYJEmSes6GTZIkqeds2CRJknrOhk2SJKnndug6wKSsWrWqZmZmuo4haZls2LDh76tq765zjIP1S9r2bK2GrdiGbWZmhvXr13cdQ9IySfLtrjOMi/VL2vZsrYa5SVSSJKnnbNgkSZJ6zoZNkiSp51bsPmzStJlZe/nE5r3xnOMmNm9JmlbTVHddwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPWfDJkmS1HM2bJIkST1nwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPWfDJkmS1HM2bJIkST1nwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPWfDJkmS1HM2bJIkST1nwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPbdD1wEkTd7M2ssnNu+N5xw3sXlLkhquYZMkSeq5oRq2JM+bdBBJmhRrmKRpN+watj9Lsi7Jf06y5zAvSHJBks1JbhoY2yvJFUnuaH8+beCxM5PcmeT2JC8dGD8iyY3tY+cmydBLJ0mNkWpYkgOSfDXJrUluTvLmdtwaJqkTQ+3DVlUvTLIaeAOwPsk64INVdcUCL/sQcB5w0cDYWuArVXVOkrXt/TOSHAycBDwXeAZwZZKfrqofA+8FTgW+DnwBeBnwxRGWURqbSe4LpslZRA17HHhrVV2b5KnAhiRXAL+GNUxSB4beh62q7gDeDpwB/CJwbpLbkvyHeZ5/FfDDLYaPBy5spy8EXj0wfklVPVJVdwN3Akcm2RfYo6qurqqiaf5ejSSNaJQaVlX3VdW17fQDwK3AfljDJHVk2H3YfibJe2iK1jHAK6vq37TT7xnh/Z5eVfdBUxCBfdrx/YDvDDxvUzu2Xzu95bgkDW0pNSzJDHAY8A2sYZI6MuxpPc4D3ge8raoenh2sqnuTvH0MOebap6MWGJ97JsmpNJseOPDAA8cQS9IKsagalmR34JPAW6rq/gV2P1tyDbN+SVrIsJtEfwn46GyhS7Jdkl0BqurDI7zf99pNBLQ/N7fjm4ADBp63P3BvO77/HONzqqrzq2pNVa3Ze++9R4glaYUbuYYl2ZGmWfuLqvpUOzyxGmb9krSQYRu2K4FdBu7v2o6N6jLglHb6FOCzA+MnJdkpyUHAamBdu8nhgSRHtUdWnTzwGkka1kg1rK03HwBurap3DzxkDZPUiWE3ie5cVQ/O3qmqB2e/nc4nycXA0cCqJJuAdwDnAJcmeSNwD3BiO7+bk1wK3EJzdNZp7dFVAL9Fc8TpLjRHVnl0laRRjVrDXgD8KnBjkuvbsbdhDZPUkWEbtoeSHD571FSSI4CHF3pBVb1unodePM/zzwbOnmN8PeBJLyUtxUg1rKq+xtz7n4E1TFIHhm3Y3gJ8PMnsvhf7Aq+dTCRJGjtrmKSpNuyJc69J8hzg2TTfOm+rqscmmkySxsQaJmnaDbuGDeD5wEz7msOSUFUXLfwSSeoNa5ikqTVUw5bkw8C/Aq4HZneknT1rtyT1mjVM0rQbdg3bGuDg9tIqkjRtrGGSptqw52G7CfiXkwwiSRNkDZM01YZdw7YKuCXJOuCR2cGqetVEUknSeFnDJE21YRu2syYZQpIm7KyuA0jSUgx7Wo+/TvJMYHVVXdmeIXz7yUaTpPGwhkmadkPtw5bkN4BPAH/eDu0HfGZSoSRpnKxhkqbdsAcdnEZzbb37AarqDmCfSYWSpDGzhkmaasM2bI9U1aOzd5LsQHMOI0maBtYwSVNt2Ibtr5O8DdglybHAx4HPTS6WJI2VNUzSVBu2YVsLfB+4EfhN4AvA2ycVSpLGzBomaaoNe5ToE8D72pskTRVrmKRpN+y1RO9mjv09qupZY08kSWNmDZM07Ua5luisnYETgb3GH0eSJsIaJk2pmbWXdx2hF4bah62qfjBw+25V/TFwzISzSdJYWMMkTbthN4kePnB3O5pvq0+dSCJJGjNrmKRpN+wm0T8amH4c2Ai8ZuxpJGkyrGGSptqwR4m+aNJBJGlSrGGSpt2wm0R/Z6HHq+rd44kjSeNnDZM07UY5SvT5wGXt/VcCVwHfmUQoSRoza5ikqTZsw7YKOLyqHgBIchbw8ar69UkFk6QxsoZJmmrDXprqQODRgfuPAjNjTyNJk2ENkzTVhl3D9mFgXZJP05wt/JeBiyaWSpLGyxomaaoNe5To2Um+CPx8O/Sfquq6ycWSpPGxhkmadsNuEgXYFbi/qv4E2JTkoAllkqRJsIZJmlpDNWxJ3gGcAZzZDu0IfGSxb5pkY5Ibk1yfZH07tleSK5Lc0f582sDzz0xyZ5Lbk7x0se8radu0mBqW5IIkm5PcNDA2cp1KckRb7+5Mcm6SjHfpJG0Lhl3D9svAq4CHAKrqXpZ+WZcXVdWhVTV7Uea1wFeqajXwlfY+SQ4GTgKeC7wM+NMk2y/xvSVtWxZTwz5EU3MGLaZOvRc4FVjd3racpyRt1bAN26NVVTQ765JktwlkOR64sJ2+EHj1wPglVfVIVd0N3AkcOYH3l7RyjVzDquoq4IdbDI9Up5LsC+xRVVe373/RwGskaWjDNmyXJvlzYM8kvwFcCbxvCe9bwJeTbEhyajv29Kq6D6D9uU87vh///OSWm9oxSRrWuGrYqHVqv3Z6y3FJGslWjxJt97f4GPAc4H7g2cD/qKorlvC+L6iqe5PsA1yR5LaFIswxVvNkPZVm0wMHHnjgEuJJWikmVMOe9DZzjNUC40+egfVL0gK22rBVVSX5TFUdAYylwLX7j1BVm9vzIh0JfC/JvlV1X7sZYXP79E3AAQMv3x+4d575ng+cD7BmzZo5i6KkbcuYa9iodWpTO73l+Fw5rV+S5jXsJtGvJ3n+ON4wyW5Jnjo7DbwEuInmGn+ntE87BfhsO30ZcFKSndrD8FcD68aRRdI2Y1w1bKQ61W42fSDJUe2avpMHXiNJQxv2SgcvAt6UZCPNUVah+eL6M4t4z6cDn26PbN8B+GhVfSnJNTT7mbwRuAc4keZNbk5yKXAL8DhwWlX9eBHvK2nbNXINS3IxcDSwKskm4B3AOYxep36L5ojTXYAvtjdJGsmCDVuSA6vqHuDl43rDqroLOGSO8R8AL57nNWcDZ48rg6Rtw1JqWFW9bp6HRqpTVbUeeN6o7y9Jg7a2hu0zwOFV9e0kn6yqE5YjlCSNiTVM0oqwtYZt8AinZ00yiDQuM2sv7zqC+sMaJmlF2NpBBzXPtCRNA2uYpBVha2vYDklyP8231F3aafjJDrt7TDSdJC2NNUzSirBgw1ZVXrNT0tSyhklaKYY9D5skSZI6YsMmSZLUczZskiRJPWfDJkmS1HM2bJIkST1nwyZJktRzw178XZIkaU5eYWbyXMMmSZLUczZskiRJPWfDJkmS1HM2bJIkST1nwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPeeJc7XsPMGiJEmjcQ2bJElSz7mGTZKkbYBbN6aba9gkSZJ6zoZNkiSp59wkqjm56lzDmuTvysZzjpvYvKU+svZqPq5hkyRJ6jkbNkmSpJ6bmk2iSV4G/AmwPfD+qjqn40iSNBTr18riZkt1YSoatiTbA/8LOBbYBFyT5LKquqXbZN2yaEj9Z/3qhvVRK81UNGzAkcCdVXUXQJJLgOMBC56kvrN+zcOmShretDRs+wHfGbi/CfjZcc3coiFpgiZav8AaJm0LpqVhyxxj9aQnJacCp7Z3H0xy+0RTLc4q4O+7DjEBK3G5VuIywRQtV9410tOfPaEYS7Uc9Wtq/k+3YO7lZe5llHeNnPuZCz04LQ3bJuCAgfv7A/du+aSqOh84f7lCLUaS9VW1pusc47YSl2slLhOs7OXqOsM8Jl6/pvX/1NzLy9zLa9y5p+W0HtcAq5MclOQpwEnAZR1nkqRhWL8kLdlUrGGrqseT/BfgL2kOi7+gqm7uOJYkbZX1S9I4TEXDBlBVXwC+0HWOMej1JtslWInLtRKXCVyuZbcM9au3y74V5l5e5l5eY82dqift+ypJkqQemZZ92CRJkrZZNmzLJMkBSb6a5NYkNyd5c9eZxiXJ9kmuS/L5rrOMS5I9k3wiyW3t/9nPdZ1pqZKc3v7u3ZTk4iQ7d51pMZJckGRzkpsGxvZKckWSO9qfT+sy41LNs4yHJLk6yY1JPpdkj3b8Pya5fuD2RJJD28eOaJ9/Z5Jzk8x1ipGucu+Y5MJ2/NYkZw68ps+5n5Lkg+34DUmO7jD3nJ8rC/09JDmzzXd7kpd2kX3U3El+qn3+g0nO22Jefc59bJINbb4NSY5ZUu6q8rYMN2Bf4PB2+qnA3wIHd51rTMv2O8BHgc93nWWMy3Qh8Ovt9FOAPbvOtMTl2Q+4G9ilvX8p8Gtd51rksvwCcDhw08DY/wTWttNrgXd1nXMCy3gN8Ivt9BuAd87xun8L3DVwfx3wczTngvsi8PK+5AZeD1zSTu8KbARmpiD3acAH2+l9gA3Adh3lnvNzZb6/h/axG4CdgIOAbwHbL3f2ReTeDXgh8CbgvC3m1efchwHPaKefB3x3Kbldw7ZMquq+qrq2nX4AuJXmQ3SqJdkfOA54f9dZxqX9Jv0LwAcAqurRqvqHblONxQ7ALkl2oPmAfNK5wKZBVV0F/HCL4eNpmmzan69e1lBjNs8yPhu4qp2+Ajhhjpe+DrgYIMm+wB5VdXU1nxAXMeF/lxFzF7Bb+/u4C/AocP8U5D4Y+Er7us3APwBrOso93+fKfH8Px9M0yY9U1d3AncCRy5191NxV9VBVfQ340eB8piD3dVU1W2dvBnZOstNic9uwdSDJDE3n/Y1uk4zFHwP/DXii6yBj9Czg+8AH02zqfX+S3boOtRRV9V3gD4F7gPuAf6yqL3ebaqyeXlX3QVNUadZ8rDQ3Aa9qp0/kn5+Md9ZraRs2mg+STQOPbaKbL4nz5f4E8BDN7+M9wB9W1Q/pf+4bgOOT7JDkIOCI9rFOc2/xuTLf38Ncl0nbjw6zD5l7PtOU+wTguqp6hEXmtmFbZkl2Bz4JvKWq7u86z1IkeQWwuao2dJ1lzHag2Tzy3qo6jOZDZW23kZam3afieJrNIM+gWbPxK92m0ojeAJyWZAPN5phHBx9M8rPA/6uq2f2whrok1jKYL/eRwI9pfh8PAt6a5Fn0P/cFNB+w62m+sP5f4HE6zD3C58p8GTvJPobPw6nIneS5wLuA35wdmuNpW81tw7aMkuxI85/8F1X1qa7zjMELgFcl2QhcAhyT5CPdRhqLTcCmqppdA/oJmgZumv174O6q+n5VPQZ8Cvh3HWcap++1mxlmN5Ns7jjP2FXVbVX1kqo6gmYt2re2eMpJ/GTtGjS/x/sP3J/zkliTtkDu1wNfqqrH2k2LfwOsoee5q+rxqjq9qg6tquOBPYE7uso9z+fKfH8P810mbdmzj5h7Pr3P3e429Gng5Kqa/d1fVG4btmXSHgHyAeDWqnp313nGoarOrKr9q2qG5sPir6pq6tfaVNXfAd9JMnsx8RcDt3QYaRzuAY5Ksmv7u/himv0vVorLgFPa6VOAz3aYZSKS7NP+3A54O/BnA49tR7PZ7pLZsXbTzANJjmr/z0+mg3+XBXLfQ/MlL+0uB0cBt/U9d/s3tFs7fSzweFXd0kXuBT5X5vt7uAw4qd2P6iBgNbBuubMvIvec+p47yZ7A5cCZVfU3S849yhES3pZ0dMkLaVZ5fhO4vr39Ute5xrh8R7OyjhI9lGaTxzeBzwBP6zrTGJbpD4DbaPbN+TCwU9eZFrkcF9Ps9/QYzTfVNwI/RbMj+B3tz726zjmBZXwzzVFpfwucQ3vi8/b5RwNfn2M+a9r/728B5w2+puvcwO7Ax2l2xr4F+L0pyT0D3E7zhedK4Jkd5p7zc2Whvwfg99t8tzNwZOJyZl9k7o00B4Y82P4fHdz33DSN/kMDz70e2Gexub3SgSRJUs+5SVSSJKnnbNgkSZJ6zoZNkiSp52zYJEmSes6GTZIkqeds2DRRSR5sf84kqSTvHHhsVZLHkpzX3j8ryXeTXJ/kjiSfSnLwwPM3Jlk1plwzSV4/cH9NknPHMW9JGtSea+5rSV4+MPaaJF/qMpemiw2bltNdwCsG7p9Icw6mQe+p5gziq4GPAX+VZO/FvFl7Uen5zNCcaR2AqlpfVb+9mPeRpIVUc/6sNwHvTrJze+Lds4HTFjO/JNuPM5+mgw2bltPDwK1J1rT3XwtcOt+Tq+pjwJcZaKyA30uyrr396y1f066lOz/Jl4GL2jVp/yfJte1t9nJM5wA/367NOz3J0Uk+PzCPC5L87yR3Jfntgfn/9yS3JbkiycVJfndJ/yKStgnVXOP1c8AZwDuAjwC/n+SaJNclOR7+ae3/k2pWW6O+muSjwI1dLYe6s9AaCGkSLqG5NMrf0Vz4+V6aiz/P51rgOQP376+qI5OcTHPh5VfM8ZojgBdW1cNJdgWOraofJVlNc0bzNTQXc//dqnoFNMVwi3k8B3gRzUWfb0/yXuAQ4ATgMJq/nWuBlXbhe0mT8wc0deNR4PM0l/N7Q3sJo3VJrqS5DuVcNQvgSOB5VXV3B9nVMRs2LbcvAe8EvkezyXNrssX9iwd+vmee11xWVQ+30zsC5yU5lKZB/Okhc15eVY8AjyTZDDyd5rIkn52dd5LPDTkvSaKqHkryMZrLK70GeOXAWvqdgQNpvsTOV7PW2axtu2zYtKyq6tEkG4C3As8FXrmVlxxGc03Pf5rFPNODHhqYPp2mOTyEZheAHw0Z9ZGB6R/T/K1s2TxK0qieaG8BTqiq2wcfTHIW89eswdqmbYz7sKkLfwScUVU/WOhJSU4AXsJP1qpBs9/b7M+rh3ivfwHcV1VPAL8KzO6s+wDN5s5RfI3mG/HOSXYHjhvx9ZI06y+B/5okAEkOa8fnq1naxrmGTcuuqm7myUeHzjo9ya8AuwE3AcdU1fcHHt8pyTdovmy8boi3+1Pgk0lOBL7KT76hfhN4PMkNwIeA64bIfU2Sy4AbgG/TrPn7xyEySNKW3kmzH+4326ZtI80+ufPVLG3j0hxtLGkYSXavqgfbgxmuAk6tqmu7ziVJWtlcwyaN5vz2ZL47AxfarEmSloNr2CRJknrOgw4kSZJ6zoZNkiSp52zYJEmSes6GTZIkqeds2CRJknrOhk2SJKnn/j/yqyg2Gs91OgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(10, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(late_movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"\n",
"# on my SECOND set of axis I want to do a distribution of \"Year\" column\n",
"#ax[0].hist(movies['Years']) # This doesn't work because \"Years\" is NOT \"Year\"\n",
"ax[1].hist(late_movies['Year']) # I've updated the column that is being histogrammed\n",
"ax[1].set_xlabel('Year') # note this is called with a \"set_\"\n",
"ax[1].set_ylabel('Frequency')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAACaCAYAAAAKCCS7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWnElEQVR4nO3de7RkZX3m8e8jEBu8DBIabMH24AzioCMXW2KiJgjpDAoILgbU8ULUhLjGmXgdbUxmhOVKVuuaeFvMJGmVEUW5KERQnCiiyDiLCN0tIAgExVbRDt0aDRcRBH7zx95Hi0Of7qo6VbWrT38/a9WqvXftqnpqn+q3f/Xuy5uqQpIkSZP3iK4DSJIk7agsxCRJkjpiISZJktQRCzFJkqSOWIhJkiR1xEJMkiSpIzt3HaAfe+65Z83MzHQdQ9IErVu37sdVtbTrHAtl+yXteAZpv7aLQmxmZoa1a9d2HUPSBCX53hRk2AlYC/ywqo5JsgdwHjADbABOqqqfbu01bL+kHc8g7Ze7JiVpfm8AbuyZXwVcVlX7A5e185I0NAsxSdqCJPsCRwMf7ll8HHBWO30WcPykc0laXCzEJGnL3g+8DXiwZ9neVbURoL3fq4tgkhaP7eIYMWl7MrPqkr7X3bD66DEm0bCSHANsqqp1SQ4f4vmnAKcALF++fMTpJG3JIG3voMbZVtsjJkkP9xzgRUk2AOcCRyQ5G7g9yTKA9n7Tlp5cVWuqakVVrVi6dLs/8VPSGFmISdIcVXVqVe1bVTPAS4EvV9UrgIuBk9vVTgYu6iiipEXCQkyS+rcaWJnkFmBlOy9JQ/MYMUnaiqq6HLi8nf4JcGSXeSQtLvaISZIkdcRCTJIkqSMWYpIkSR2xEJMkSeqIhZgkSVJHLMQkSZI6YiEmSZLUEQsxSZKkjliISZIkdcRCTJIkqSMWYpIkSR2xEJMkSeqIhZgkSVJHdu46gCRJ2jHMrLqk6whTxx4xSZKkjoytRyzJE4GPAY8HHgTWVNUHkuwBnAfMABuAk6rqp+PKIU2zfn8dblh99JiTSJK6MM4esfuBt1TVvwWeDbw+yYHAKuCyqtofuKydlyRJ2uGMrRCrqo1Vtb6dvhO4EdgHOA44q13tLOD4cWWQpGEkWZLkqiTXJrkhyent8j2SXJrklvb+cV1nlbR9m8gxYklmgEOArwN7V9VGaIo1YK9JZJCkAdwLHFFVBwEHA0cleTb26EsasbEXYkkeDVwAvLGq7hjgeackWZtk7ebNm8cXUJLmqMZd7ewu7a2wR1/SiPVViCV5+jAvnmQXmiLsE1V1Ybv49iTL2seXAZu29NyqWlNVK6pqxdKlS4d5e0kChmvDkuyU5BqaNurSqrJHX9LI9dsj9jft8RL/Kcnu/TwhSYCPADdW1Xt7HroYOLmdPhm4qO+0kjScgduwqnqgqg4G9gUOG6SYs0dfUr/6KsSq6rnAy4EnAmuTfDLJym087TnAK4EjklzT3l4IrAZWJrkFWNnOS9LYDNmGzT73Z8DlwFHYoy9pxPq+jlhV3ZLkz4G1wAeBQ9per3f07HbsXf9rQOZ5uSOHCStJwxqkDUuyFPhlVf0sya7A7wPv5tc9+quxR1/SCPRViCV5BvBq4GjgUuDYqlqf5AnAlcDDCjFJmhZDtGHLgLOS7ESz5+D8qvpckiuB85O8Fvg+cOLEPoSkRanfHrEzgA/R/HK8Z3ZhVf2o/YUpSdNsoDasqq6jueTO3OU/wR59SSPUbyH2QuCeqnoAIMkjgCVV9fOq+vjY0knSaNiGSZpK/Z41+SVg15753dplkrQ9sA2TNJX6LcSW9FzckHZ6t/FEkqSRsw2TNJX6LcTuTnLo7EySZwL3bGV9SZomtmGSplK/x4i9EfhUkh+188uAl4wnkiSNnG2YpKnUVyFWVVcneSpwAM21wW6qql+ONZkkjYhtmKRp1fcFXYFnATPtcw5JQlV9bCypJGn0bMMkTZ1+L+j6ceBfA9cAD7SLC7ARkzT1bMMkTat+e8RWAAdWVY0zjCSNiW2YpKnU71mT1wOPH2cQSRoj2zBJU6nfHrE9gW8luQq4d3ZhVb1oLKkkabRswyRNpX4LsdPGGUKSxuy0rgNI0pb0e/mKryZ5ErB/VX0pyW7ATuONJkmjYRsmaVr1dYxYkj8GPg38bbtoH+Az4wolSaNkGyZpWvV7sP7rgecAdwBU1S3AXuMKJUkjZhsmaSr1W4jdW1X3zc4k2ZnmGjyStD2wDZM0lfotxL6a5B3ArklWAp8CPju+WJI0UrZhkqZSv2dNrgJeC3wT+BPg88CHxxVK0kPNrLqk73U3rD56jEm2WwO1YUmeSHPV/ccDDwJrquoDSfYAzqMZKmkDcFJV/XSsySUtav2eNfkg8KH2JknblSHasPuBt1TV+iSPAdYluRT4Q+CyqlqdZBVNgff2cWSWtGPod6zJ77KF4ymq6skjTyRJIzZoG1ZVG4GN7fSdSW6kOdPyOODwdrWzgMuxEJO0AIOMNTlrCXAisMfo40jSWAzdhiWZAQ4Bvg7s3RZpVNXGJJ55KWlB+jpYv6p+0nP7YVW9HzhizNkkaSSGbcOSPBq4AHhjVd3R7/slOSXJ2iRrN2/evIDkkha7fndNHtoz+wiaX5ePGUsiSRqxYdqwJLvQFGGfqKoL28W3J1nW9oYtAzZt6blVtQZYA7BixQovkyFpXv3umvyrnun7ac8WGnkaSRqPgdqwJAE+AtxYVe/teehi4GRgdXt/0ciTStqh9HvW5PPHHUSSxmWINuw5wCuBbya5pl32DpoC7PwkrwW+T3OsmSQNrd9dk2/e2uNzfjFK0lQZtA2rqq8BmWf1I0eVS5IGOWvyWTTd8gDHAlcAPxhHKEkaMdswqU+DXEBaC9dvIbYncGhV3QmQ5DTgU1X1R+MKJkkjZBsmaSr1O9bkcuC+nvn7aIb4kKTtgW2YpKnUb4/Yx4GrkvwdzdWpX0wzDtu8kpwJHANsqqqnt8scp01SFwZuwyRpEvq9oOtfAK8Gfgr8DHh1Vf3lNp72UeCoOctW0YzTtj9wWTsvSWM1ZBsmSWPX765JgN2AO6rqA8BtSfbb2spVdQXwz3MWH0czPhvt/fEDvL8kLcRAbZgkTUJfhViSd9IMbHtqu2gX4Owh3u8h47QBjtMmaexG2IZJ0kj1e4zYi2kGvV0PUFU/SjLWIY6SnAKcArB8+fJxvpW0qAxy6vmG1UePMclUmXgbJkn96HfX5H1VVTQHuZLkUUO+3+3t+GxsbZw2aMZqq6oVVbVi6dKlQ76dJAGja8MkaaT6LcTOT/K3wO5J/hj4EvChId5vdpw2cJw2SZMzqjZMkkZqm7sm28FvzwOeCtwBHAD896q6dBvPOwc4HNgzyW3AO3GcNkkTNmwbJkmTsM1CrKoqyWeq6plA3w1XVb1snoccp03SxAzbhknSJPS7a/IfkjxrrEkkaXxswyRNpX7Pmnw+8LokG4C7gdD80HzGuIJJ0gjZhkmaSlstxJIsr6rvAy+YUB5JGhnbMEnTbls9Yp8BDq2q7yW5oKpOmEQoadoMcm0uTRXbMElTbVvHiKVn+snjDCJJY2AbJmmqbasQq3mmJWl7MHQbluTMJJuSXN+zbI8klya5pb1/3MiSStohbasQOyjJHUnuBJ7RTt+R5M4kd0wioCQtwELasI8CR81Ztgq4rKr2By5r5yVpaFs9RqyqdppUEEkatYW0YVV1RZKZOYuPo7lQNcBZwOU0g4lL0lD6vY6YJAn2rqqNAO39Xh3nkbSdsxCTpBFLckqStUnWbt68ues4kqaYhZgk9e/2JMsA2vtNW1qpqtZU1YqqWrF06dKJBpS0fbEQk6T+XQyc3E6fDFzUYRZJi4CFmCRtQZJzgCuBA5LcluS1wGpgZZJbgJXtvCQNrd+xJiVph1JVL5vnoSMnGkTSomaPmCRJUkcsxCRJkjpiISZJktQRjxGTJGk7M7Pqkq4jaETsEZMkSeqIhZgkSVJHLMQkSZI6YiEmSZLUEQsxSZKkjnjWpDozyFk/G1Yf3en7L1b9boNxbH9Jkj1ikiRJnbEQkyRJ6oiFmCRJUkc8RkySpsg4j130WL+Hc3ura/aISZIkdcRCTJIkqSMWYpIkSR3ppBBLclSSm5N8O8mqLjJI0rBswySNysQP1k+yE/A/gZXAbcDVSS6uqm9NOoskDWp7bsM8MF2aPl30iB0GfLuqbq2q+4BzgeM6yCFJw7ANkzQyXRRi+wA/6Jm/rV0mSdsD2zBJI9PFdcSyhWX1sJWSU4BT2tm7ktw81lQPtSfw4wm+36Rtd58v7x74KdvdZxzQRD/fENt/FA7o5F23bZtt2IDt17R8VxeUY4TfkUWxPWBk22TRbI8R6STHFv6W28rxpH5fu4tC7DbgiT3z+wI/mrtSVa0B1kwqVK8ka6tqRRfvPQmL/fPB4v+Mi/3zQfMZu84wj222YYO0X9PytzSHOczRTY4udk1eDeyfZL8kvwG8FLi4gxySNAzbMEkjM/Eesaq6P8l/Br4A7AScWVU3TDqHJA3DNkzSKHUy1mRVfR74fBfv3adOdolO0GL/fLD4P+Ni/3wwxZ9xxG3YtHxOczyUOR7KHA81shypethx8pIkSZoAhziSJEnqiIVYjyRPTPKVJDcmuSHJG7rONA5JdkryjSSf6zrLqCXZPcmnk9zU/h1/u+tMo5bkTe338/ok5yRZ0nWmhUhyZpJNSa7vWbZHkkuT3NLeP67LjIOa5zMdlOTKJN9M8tkkj+157NR2uKSbk/z7nuXPbNf/dpIPJtnSpTNGkiPJb7bt311JzpjzOpPMsTLJunb5uiRHdJTjsCTXtLdrk7x4FDkG/W60jy9v/y5v7WhbzCS5p2d7/E0XOdrHntE+dkP7+JIOtsfLe7bFNUkeTHLw0Dmqylt7A5YBh7bTjwH+ETiw61xj+JxvBj4JfK7rLGP4bGcBf9RO/wawe9eZRvz59gG+C+zazp8P/GHXuRb4mX4XOBS4vmfZe4BV7fQq4N1d5xzBZ7oa+L12+jXAu9rpA4FrgUcC+wHfAXZqH7sK+G2aa5f9H+AFY8zxKOC5wOuAM+a8ziRzHAI8oZ1+OvDDjnLsBuzcTi8DNvXMD51jkAw9j18AfAp4a0fbYqZ3vQ6/GzsD1wEHtfO/SQf/VuY8798Bty5ke9gj1qOqNlbV+nb6TuBGFtkVs5PsCxwNfLjrLKPW/lr5XeAjAFV1X1X9rNtUY7EzsGuSnWn+s3jYdfi2J1V1BfDPcxYfR1NU094fP9FQCzTPZzoAuKKdvhQ4oZ0+Dji3qu6tqu8C3wYOS7IMeGxVXVlNC/8xBtwOg+Soqrur6mvAL3pX7iDHN6pq9jt9A7AkySM7yPHzqrq/Xb6E9qK9C80x4HeDJMcDt9Jsi9llE90W8+kgxx8A11XVte1zf1JVD3S8PV4GnAPDbw8LsXkkmaH5Zfb1bpOM3PuBtwEPdh1kDJ4MbAb+d5pdrx9O8qiuQ41SVf0Q+B/A94GNwL9U1Re7TTUWe1fVRmh+IAF7dZxnFK4HXtROn8ivLwo735BJ+7TTc5ePK8d8usxxAvCNqrq3ixxJfivJDcA3gde1hdk4cmwxQ9t+vR04fc76XfxN9mvb1a8meV5HOZ4CVJIvJFmf5G0d5ej1EtpCbNgcFmJbkOTRNF3Bb6yqO7rOMypJjgE2VdW6rrOMyc40Xct/XVWHAHfT7NZaNNIcK3UczS6sJwCPSvKKblOpT68BXp9kHc2hD/e1y+cbMqmv4eBGmGM+neRI8jTg3cCfdJWjqr5eVU8DngWc2h6PNI4c82U4HXhfVd01Z/1Jb4uNwPK2XX0z8Ml2D8Skc+xMs/v85e39i5Mc2UEOoCnUgZ9X1exxZUPl6OQ6YtMsyS40RdgnqurCrvOM2HOAFyV5IU1X+2OTnF1Vi+U/8tuA26pqthfz0yyyQgz4feC7VbUZIMmFwO8AZ3eaavRuT7Ksqja23f2bug60UFV1E82uFZI8heYQAZh/yKTb2um5y8eVYz4Tz9EeQvF3wKuq6jtd5ehZ58Ykd9McszbyHFvJ8FvAf0jyHmB34MEkv6D5P2pi26Ltkby3nV6X5Ds0vVOT/pvcBny1qn7cPvZ5mh/fZ084x6yX8uvesNl8A+ewR6xHe3bDR4Abq+q9XecZtao6tar2raoZmi/QlxdREUZV/RPwgySzg0UfCXyrw0jj8H3g2Ul2a7+vR9Icy7jYXAyc3E6fDFzUYZaRSLJXe/8I4M+B2TPPLgZe2h4HtR+wP3BVu0v2ziTPbv/Wr2IE22ErObZo0jmS7A5cApxaVf+vwxz7tcdhkuRJNMcLbRhHjvkyVNXzqmqmbbPfD/xlVZ3RwbZYmmSndvrJNN/RWzv4jn4BeEbb/u0M/B7wrS7+rbTLTgTOnV02dI5+zibYUW40XZ1Fc1bGNe3thV3nGtNnPZzFedbkwcDa9m/4GeBxXWcaw2c8HbiJ5viFjwOP7DrTAj/POTS7Pn5J84vytTRnQ10G3NLe79F1zhF8pjfQnIn9j8Bq2gtqt+v/Gc3ZkjfTc5YVsKL9O38HOKP3OWPKsYHmgOW72vUPnHQOmv/w7u5pg68B9uogxytpDpC/BlgPHD+Kv8ugf5Oe553GQ8+anOS2OKHdFte22+LYDr+jr2izXA+8p8MchwP/sIXXGTiHV9aXJEnqiLsmJUmSOmIhJkmS1BELMUmSpI5YiEmSJHXEQkySJKkjFmIaSJK72vuZJJXkXT2P7Znkl0nOaOdPS/LDNKPT35LkwiQH9qy/IcmeI8o1k+Q/9syvSPLBUby2JPVK42tJXtCz7KQkf99lLm2fLMS0ELcCx/TMn0jPwLSt91XVwVW1P3Ae8OUkS4d5s9mLK85jBvhVIVZVa6vqT4d5H0nammqu+/Q64L1JlqQZE/IvgNcP83qzF0vVjslCTAtxD3BjkhXt/EuA8+dbuarOA75IT8EE/NckV7W3fzP3OW2v2pokXwQ+1vZ8/d80A76uT/I77aqrgee1vW9vSnJ4ks/1vMaZSS5PcmuSP+15/f+W5KYklyY5J8lbF7RFJO0Qqhlf8LM0g3K/k2aYnT9LcnWawbGPg1/11j+szWrbqK8k+STNoOLaQTnWpBbqXJrhWf4JeIBmXK0nbGX99cBTe+bvqKrDkryKZgiPY7bwnGcCz62qe5LsBqysql8k2Z/masgraMaUfGtVHQNNIzfnNZ4KPJ9m4Nabk/w1cBDNFaMPofm3sB5YrAOiSxq902najfuAz9EMG/eadpimq5J8iWac1C21WQCHAU+vqu92kF1TwkJMC/X3wLuA22l2PW7L3NHpz+m5f988z7m4qu5pp3cBzkhyME3h95Q+c15S7cC1STYBe9MMaXXR7Gsn+WyfryVJVNXdSc6jGRLqJODYnl71JcBymh+n87VZV1mEyUJMC1JV9yVZB7wFeBpw7DaecgjNWJC/eol5pnvd3TP9Jpqi7yCaXeu/6DPqvT3TD9B89+cWhZI0qAfbW4ATqurm3geTnMb8bVZv26YdlMeIaRT+Cnh7Vf1kayslOQH4A37dCwbNcWWz91f28V7/CthYVQ/SDMo7e5DrnTS7HQfxNZpfsEuSPBo4esDnS9KsLwD/JUkAkhzSLp+vzZIAe8Q0AlV1Aw8/W3LWm5K8AngUzYj0R1TV5p7HH5nk6zQ/Cl7Wx9v9L+CCJCcCX+HXvyivA+5Pci3wUeAbfeS+OsnFwLXA92h66v6ljwySNNe7aI5zva4txjbQHPM6X5slAZDmLFxpx5Tk0VV1V3sSwBXAKVW1vutckqQdgz1i2tGtaS8yuwQ4yyJMkjRJ9ohJkiR1xIP1JUmSOmIhJkmS1BELMUmSpI5YiEmSJHXEQkySJKkjFmKSJEkd+f8EonQ6AAw1kwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(10, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(early_movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"ax[0].set_xlim(1,10)\n",
"\n",
"# on my SECOND set of axis I want to do a distribution of \"Year\" column\n",
"#ax[0].hist(movies['Years']) # This doesn't work because \"Years\" is NOT \"Year\"\n",
"ax[1].hist(early_movies['Year']) # I've updated the column that is being histogrammed\n",
"ax[1].set_xlabel('Year') # note this is called with a \"set_\"\n",
"ax[1].set_ylabel('Frequency')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAACaCAYAAAAUwRQIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVg0lEQVR4nO3de7SldX3f8feHi1y1SAYocnGwnWjRhttISDUJYvESUExZKNoEUk2IKW2UmJTB2EqWi7WgK9GERWOCioJGEO8oagRjQ03RYYaL3APCiAPEMboilyIX+faP5zlxO5xzZu9z9j7Ps8+8X2vtdZ7925fn88yc893f/VxTVUiSJKm/tuk6gCRJkuZnwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPWfDJkmS1HPbdR1gUlasWFErV67sOoakJbJ+/fp/rKo9us4xDtYvaeuzpRq2bBu2lStXsm7duq5jSFoiSb7ddYZxsX5JW58t1TA3iUqSJPWcDZskSVLP2bBJkiT13LLdh03qu5VrLp/4PDacfczE5yFJ02qSdXjc9dc1bJIkST1nwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPWfDJkmS1HM2bJIkST1nwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPWfDJkmS1HM2bJIkST1nwyZJktRzNmySJEk9Z8MmSZLUczZskiRJPWfDJkmS1HM2bJIkST1nwyZJktRzNmySJEk9Z8MmSZLUc9t1HUDS5Kxcc/lE33/D2cdM9P0lSQ3XsEmSJPXcUA1bkhdMOogkTYo1TNK0G3YN218kWZvkPyfZbZgXJLkgyaYkNw2M7Z7kiiR3tD+fOfDYGUnuTHJ7kpcPjB+W5Mb2sXOTZOilk6TGSDUsyX5Jvprk1iQ3J3lLO24Nk9SJofZhq6oXJ1kFvBFYl2Qt8MGqumKel30IOA+4aGBsDfCVqjo7yZr2/ulJDgROBJ4PPAu4MsnPVtWPgfcCpwBfB74AvAL44gjLKC3IpPf/0tJZQA17AnhbVV2b5OnA+iRXAL+BNUxSB4beh62q7gDeAZwO/DJwbpLbkvyHOZ5/FfCDzYaPAy5spy8EXjMwfklVPVpVdwN3Aocn2Rt4RlVdXVVF0/y9Bkka0Sg1rKrur6pr2+kHgVuBfbCGSerIsPuw/VyS99AUraOAV1XVv2mn3zPC/PaqqvuhKYjAnu34PsB3Bp63sR3bp53efFyShraYGpZkJXAI8A2sYZI6MuxpPc4D3ge8vaoemRmsqvuSvGMMOWbbp6PmGZ/9TZJTaDY9sP/++48hlqRlYkE1LMmuwCeBt1bVA/PsfrboGmb9kjSfYTeJ/grw0ZlCl2SbJDsDVNWHR5jfd9tNBLQ/N7XjG4H9Bp63L3BfO77vLOOzqqrzq2p1Va3eY489RoglaZkbuYYl2Z6mWfurqvpUOzyxGmb9kjSfYRu2K4GdBu7v3I6N6jLg5Hb6ZOCzA+MnJtkhyQHAKmBtu8nhwSRHtEdWnTTwGkka1kg1rK03HwBurap3DzxkDZPUiWE3ie5YVQ/N3Kmqh2a+nc4lycXAkcCKJBuBdwJnA5cmeRNwD3BC+343J7kUuIXm6KxT26OrAH6H5ojTnWiOrPLoKkmjGrWGvQj4deDGJNe3Y2/HGiapI8M2bA8nOXTmqKkkhwGPzPeCqnr9HA+9dI7nnwWcNcv4OsCTXkpajJFqWFV9jdn3PwNrmKQODNuwvRX4eJKZfS/2Bl43mUiSNHbWMElTbdgT516T5HnAc2m+dd5WVY9PNJkkjYk1TNK0G3YNG8ALgZXtaw5JQlVdNP9LJKk3rGGSptZQDVuSDwP/CrgemNmRduas3ZLUa9YwSdNu2DVsq4ED20urSNK0sYZJmmrDnoftJuBfTjKIJE2QNUzSVBt2DdsK4JYka4FHZwar6tUTSSVJ42UNkzTVhm3YzpxkCEmasDO7DiBJizHsaT3+NsmzgVVVdWV7hvBtJxtNksbDGiZp2g21D1uS3wI+AfxlO7QP8JlJhZKkcbKGSZp2wx50cCrNtfUeAKiqO4A9JxVKksbMGiZpqg3bsD1aVY/N3EmyHc05jCRpGljDJE21YRu2v03ydmCnJEcDHwc+N7lYkjRW1jBJU23Yhm0N8D3gRuC3gS8A75hUKEkaM2uYpKk27FGiTwLva2+SNFWsYZKm3bDXEr2bWfb3qKrnjD2RJI2ZNUzStBvlWqIzdgROAHYffxxJmghrmDSlVq65vOsIvTDUPmxV9f2B271V9afAURPOJkljYQ2TNO2G3SR66MDdbWi+rT59IokkacysYZKm3bCbRP9kYPoJYAPw2rGnkaTJsIZJmmrDHiX6kkkHkaRJsYZJmnbDbhL9vfker6p3jyeOJI2fNUzStBvlKNEXApe1918FXAV8ZxKhJGnMrGGSptqwDdsK4NCqehAgyZnAx6vqNycVTJLGyBomaaoNe2mq/YHHBu4/BqwcexpJmgxrmKSpNuwatg8Da5N8muZs4b8KXDSxVJI0XtYwSVNt2KNEz0ryReAX26H/VFXXTS6WJI2PNUzStBt2kyjAzsADVfVnwMYkB0wokyRNgjVM0tQaqmFL8k7gdOCMdmh74CMLnWmSDUluTHJ9knXt2O5JrkhyR/vzmQPPPyPJnUluT/Lyhc5X0tZpITUsyQVJNiW5aWBs5DqV5LC23t2Z5NwkGe/SSdoaDLuG7VeBVwMPA1TVfSz+si4vqaqDq2rmosxrgK9U1SrgK+19khwInAg8H3gF8OdJtl3kvCVtXRZSwz5EU3MGLaROvRc4BVjV3jZ/T0naomEbtseqqmh21iXJLhPIchxwYTt9IfCagfFLqurRqrobuBM4fALzl7R8jVzDquoq4AebDY9Up5LsDTyjqq5u53/RwGskaWjDNmyXJvlLYLckvwVcCbxvEfMt4MtJ1ic5pR3bq6ruB2h/7tmO78NPn9xyYzsmScMaVw0btU7t005vPi5JI9niUaLt/hYfA54HPAA8F/gfVXXFIub7oqq6L8mewBVJbpsvwixjNUfWU2g2PbD//vsvIp6k5WJCNewps5llrOYZf+obWL8kzWOLDVtVVZLPVNVhwFgKXLv/CFW1qT0v0uHAd5PsXVX3t5sRNrVP3wjsN/DyfYH75njf84HzAVavXj1rUZS0dRlzDRu1Tm1spzcfny2n9UvSnIbdJPr1JC8cxwyT7JLk6TPTwMuAm2iu8Xdy+7STgc+205cBJybZoT0MfxWwdhxZJG01xlXDRqpT7WbTB5Mc0a7pO2ngNZI0tGGvdPAS4M1JNtAcZRWaL64/t4B57gV8uj2yfTvgo1X1pSTX0Oxn8ibgHuAEmpncnORS4BbgCeDUqvrxAuYraes1cg1LcjFwJLAiyUbgncDZjF6nfofmiNOdgC+2N0kaybwNW5L9q+oe4JXjmmFV3QUcNMv494GXzvGas4CzxpVB0tZhMTWsql4/x0Mj1amqWge8YNT5S9KgLa1h+wxwaFV9O8knq+r4pQglSWNiDZO0LGypYRs8wuk5kwwijWrlmsu7jqD+s4ZJWha2dNBBzTEtSdPAGiZpWdjSGraDkjxA8y11p3YafrLD7jMmmk6SFscaJmlZmLdhqyqv2SlpalnDJC0Xw56HTZIkSR2xYZMkSeo5GzZJkqSes2GTJEnqORs2SZKknrNhkyRJ6rlhL/4uSZI0K688M3muYZMkSeo5GzZJkqSes2GTJEnqORs2SZKknrNhkyRJ6jkbNkmSpJ6zYZMkSeo5GzZJkqSe88S5mhhPpChJ0ni4hk2SJKnnXMMmSdJWwK0e0801bJIkST1nwyZJktRzbhLdSrlqXOMw6d+jDWcfM9H3l/rG2qy5uIZNkiSp52zYJEmSem5qNokmeQXwZ8C2wPur6uyOI0nSUKxfy4ubLdWFqWjYkmwL/C/gaGAjcE2Sy6rqlm6TTY4FQVoetsb61QfWUC03U9GwAYcDd1bVXQBJLgGOAyx4kvrO+jUHmyppeNPSsO0DfGfg/kbg5+d7wY33/tBiIKkPRq5fo7LWScvftDRsmWWsnvKk5BTglPbuQ98+59jbJ5rqp60A/nEJ57fUlvvywfJfxqlbvpwz0tOfO6EYi7Wg+pVklPo1df+3LXMvLXMvoZwzcu5nz/fgtDRsG4H9Bu7vC9y3+ZOq6nzg/KUKNSjJuqpa3cW8l8JyXz5Y/su4NSxf1xnmMPH6Na3/t+ZeWuZeWuPOPS2n9bgGWJXkgCRPA04ELus4kyQNw/oladGmYg1bVT2R5L8Af01zWPwFVXVzx7EkaYusX5LGYSoaNoCq+gLwha5zzKOTTbFLaLkvHyz/ZXT5OrIE9au3y74F5l5a5l5aY82dqqfs+ypJkqQemZZ92CRJkrZaNmyLkGS/JF9NcmuSm5O8petMk5Bk2yTXJfl811kmIcluST6R5Lb2//IXus40TklOa38/b0pycZIdu860WEkuSLIpyU0DY7snuSLJHe3PZ3aZcTHmWL6Dklyd5MYkn0vyjHb8Pya5fuD2ZJKD28cOa59/Z5Jzk8x2ipGucm+f5MJ2/NYkZwy8ps+5n5bkg+34DUmO7DD3rJ9B8/0tJDmjzXd7kpd3kX3U3El+pn3+Q0nO2+y9+pz76CTr23zrkxy1qNxV5W2BN2Bv4NB2+unA3wMHdp1rAsv5e8BHgc93nWVCy3ch8Jvt9NOA3brONMZl2we4G9ipvX8p8Btd5xrDcv0ScChw08DY/wTWtNNrgHO6zjnm5bsG+OV2+o3Au2Z53b8F7hq4vxb4BZpzwX0ReGVfcgNvAC5pp3cGNgArpyD3qcAH2+k9gfXANh3lnvUzaK6/hfaxG4AdgAOAbwHbLnX2BeTeBXgx8GbgvM3eq8+5DwGe1U6/ALh3Mbldw7YIVXV/VV3bTj8I3ErzAblsJNkXOAZ4f9dZJqH91vxLwAcAquqxqvqnblON3XbATkm2o/lgfMo5wKZNVV0F/GCz4eNomm/an69Z0lBjNMfyPRe4qp2+Ajh+lpe+HrgYIMnewDOq6upqPiEuYsL/JiPmLmCX9vdyJ+Ax4IEpyH0g8JX2dZuAfwJWd5R7rs+guf4WjqNpkh+tqruBO4HDlzr7qLmr6uGq+hrwo8H3mYLc11XVTL29GdgxyQ4LzW3DNiZJVtJ009/oNsnY/Snw34Anuw4yIc8Bvgd8MM1m3/cn2aXrUONSVfcCfwzcA9wP/LCqvtxtqonZq6ruh6aw0qz9WE5uAl7dTp/AT5+Md8braBs2mg+SjQOPbaSbL5Rz5f4E8DDN7+U9wB9X1Q/of+4bgOOSbJfkAOCw9rFOc2/2GTTX38Jsl0nbhw6zD5l7LtOU+3jguqp6lAXmtmEbgyS7Ap8E3lpVD3SdZ1ySHAtsqqr1XWeZoO1oNoW8t6oOofkAWdNtpPFp96U4jmbzx7No1mj8WreptEBvBE5Nsp5mc8xjgw8m+Xng/1XVzH5YQ10SawnMlftw4Mc0v5cHAG9L8hz6n/sCmg/YdTRfaP8v8AQd5h7hM2iujJ1kH8Nn51TkTvJ84Bzgt2eGZnnaFnPbsC1Sku1p/uP+qqo+1XWeMXsR8OokG4BLgKOSfKTbSGO3EdhYVTNrRj9B08AtF/8euLuqvldVjwOfAv5dx5km5bvtpoaZTSWbOs4zVlV1W1W9rKoOo1mL9q3NnnIiP1m7Bs3v9r4D92e9JNakzZP7DcCXqurxdtPi3wGr6Xnuqnqiqk6rqoOr6jhgN+COrnLP8Rk019/CXJdJW/LsI+aeS+9zt7sVfRo4qapmfvcXlNuGbRHaozo+ANxaVe/uOs+4VdUZVbVvVa2k+TD4m6paVmtnquofgO8kmblw+EuBWzqMNG73AEck2bn9fX0pzX4Xy9FlwMnt9MnAZzvMMnZJ9mx/bgO8A/iLgce2odlsd8nMWLtp5sEkR7T/9yfRwb/JPLnvofkSmHY3hCOA2/qeu/1b2qWdPhp4oqpu6SL3PJ9Bc/0tXAac2O5HdQCwCli71NkXkHtWfc+dZDfgcuCMqvq7Rece5QgJb085YuTFNKsxvwlc395+petcE1rWI1m+R4keTLN545vAZ4Bndp1pzMv3R8BtNPvkfBjYoetMY1imi2n2fXqc5tvqm4CfodkZ/I725+5d5xzz8r2F5qi0vwfOpj3xefv8I4Gvz/I+q9v/928B5w2+puvcwK7Ax2l2xr4F+IMpyb0SuJ3mi8+VwLM7zD3rZ9B8fwvAH7b5bmfgyMSlzL7A3BtoDgx5qP0/OrDvuWka/YcHnns9sOdCc3ulA0mSpJ5zk6gkSVLP2bBJkiT1nA2bJElSz9mwSZIk9ZwNmyRJUs/ZsGmikjzU/lyZpJK8a+CxFUkeT3Jee//MJPcmuT7JHUk+leTAgedvSLJiTLlWJnnDwP3VSc4dx3tL0qD2XHNfS/LKgbHXJvlSl7k0XWzYtJTuAo4duH8CzTmYBr2nmjOIrwI+BvxNkj0WMrP2otJzWUlzpnUAqmpdVf3uQuYjSfOp5vxZbwbenWTH9sS7ZwGnLuT9kmw7znyaDjZsWkqPALcmWd3efx1w6VxPrqqPAV9moLEC/iDJ2vb2rzd/TbuW7vwkXwYuatek/Z8k17a3mcsynQ38Yrs277QkRyb5/MB7XJDkfye5K8nvDrz/f09yW5Irklyc5PcX9S8iaatQzTVePwecDrwT+Ajwh0muSXJdkuPgn9f+P6VmtTXqq0k+CtzY1XKoO/OtgZAm4RKaS6P8A82Fn++jufjzXK4Fnjdw/4GqOjzJSTQXXj52ltccBry4qh5JsjNwdFX9KMkqmjOar6a5wPvvV9Wx0BTDzd7jecBLaC76fHuS9wIHAccDh9D87VwLrB96ySVt7f6Ipm48Bnye5nJ/b2wvYbQ2yZU016GcrWYBHA68oKru7iC7OmbDpqX2JeBdwHdpNnluSTa7f/HAz/fM8ZrLquqRdnp74LwkB9M0iD87ZM7Lq+pR4NEkm4C9aC5L8tmZ907yuSHfS5KoqoeTfIzm8kqvBV41sJZ+R2B/mi+xc9WstTZrWy8bNi2pqnosyXrgbcDzgVdt4SWH0Fzn85/fYo7pQQ8PTJ9G0xweRLMLwI+GjProwPSPaf5WNm8eJWlUT7a3AMdX1e2DDyY5k7lr1mBt01bGfdjUhT8BTq+q78/3pCTHAy/jJ2vVoNnvbebn1UPM618A91fVk8CvAzM76z5Is7lzFF+j+Ua8Y5JdgWNGfL0kzfhr4L8mCUCSQ9rxuWqWtnKuYdOSq6qbeerRoTNOS/JrwC7ATcBRVfW9gcd3SPINmi8brx9idn8OfDLJCcBX+ck31G8CTyS5AfgQcN0Qua9JchlwA/BtmjV/PxwigyRt7l00++F+s23aNtDskztXzdJWLs3RxpKGkWTXqnqoPZjhKuCUqrq261ySpOXNNWzSaM5vT+a7I3ChzZokaSm4hk2SJKnnPOhAkiSp52zYJEmSes6GTZIkqeds2CRJknrOhk2SJKnnbNgkSZJ67v8DrDQsknSLxnIAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# now, finally! let's do some side-by-side plots\n",
"fig, ax = plt.subplots(nrows = 1,ncols = 2, figsize=(10, 2)) # figsize(width, height)\n",
"\n",
"# plotting on my FIRST set of axes by indexing my \"ax\" ARRAY with its first index\n",
"ax[0].hist(late_movies['IMDb']) # ax object is NOT something I can plot with\n",
"ax[0].set_xlabel('IMDb rating') # note this is called with a \"set_\"\n",
"ax[0].set_ylabel('Frequency')\n",
"ax[0].set_xlim(1,10)\n",
"\n",
"# on my SECOND set of axis I want to do a distribution of \"Year\" column\n",
"#ax[0].hist(movies['Years']) # This doesn't work because \"Years\" is NOT \"Year\"\n",
"ax[1].hist(late_movies['Year']) # I've updated the column that is being histogrammed\n",
"ax[1].set_xlabel('Year') # note this is called with a \"set_\"\n",
"ax[1].set_ylabel('Frequency')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7.113258426966292"
]
},
"execution_count": 101,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# we can actually do stats calcualtions by hand\n",
"movies['IMDb'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7.54659090909091"
]
},
"execution_count": 102,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"early_movies['IMDb'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7.113258426966292"
]
},
"execution_count": 107,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"movies['IMDb'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5.641418641953306"
]
},
"execution_count": 109,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"movies['IMDb'].sum()/len(movies['IMDb'])"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"nan"
]
},
"execution_count": 110,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(list(movies['IMDb']))"
]
},
{
"cell_type": "code",
"execution_count": 111,
"metadata": {},
"outputs": [],
"source": [
"sum?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}